Onondaga County Health Department

Division of Environmental Health 421 Montgomery Street Syracuse, New York 13202

Incinerator Monitoring Program

2012 Summary Report

June 1, 2013

Submitted To: Cynthia B. Morrow, M.D., M.P.H. Commissioner of Health

Submitted By: Kevin L. Zimmerman Director, Division of Environmental Health Summary Statement: In the monitoring conducted to date, no relationship has been established between the operation of the incinerator and any significant increased levels of constituents in the environment.

Introduction

The Onondaga County Health Department initiated an incinerator monitoring program in 1994, the year prior to the Waste to Energy (WTE) facility being placed into operation. In 2003, the monitoring program for air, soil and ash was reevaluated, and a more effective and efficient program was developed and implemented starting in 2004. As an alternative to offsite air monitoring, direct interaction was established with the Onondaga County Resource Recovery Agency (OCCRA) and the New York State Department of Environmental Conservation (DEC) in providing stack monitoring results and improved assurance on reporting of adverse events and equipment failures. This allows for evaluation of short-term changes in the incinerator emissions, an effective alternative to the previous limited scope offsite air monitoring conducted over a nine year period.

Long-term deposition impacts continue to be evaluated by soil and ash monitoring. All soil samples are analyzed for metals twice a year. Several changes related to organics testing have been implemented based on the low levels detected in the monitoring conducted to date, and the fact that there is no evidence of a trend or levels associated with health risks. Starting in 2009, half of the soil sampling sites were analyzed for organics each year, therefore each site is sampled biennially. The monitoring program has the flexibility of testing a site again in the following year should an elevated level of any organic constituent be detected. The four soil ash route sites have been eliminated from the program. To date these sites have not shown any elevation of metals or organics indicating that ash transport in covered vehicles is not a significant environmental or health concern. Ash, directly from the incinerator continues to be analyzed for metals twice a year and organics once a year. Under present contracts, organic analysis is performed by Axys Analytical Services, LTD, and metal analysis is performed by Life Science Laboratories, Inc. The collection of soil is performed by Onondaga County Health Department, Division of Environmental Health staff, while collection of the ash is the responsibility of Covanta Energy System under New York State Department of Environmental Conservation protocols.

Air Monitoring

During 2012, the department interacted directly with OCCRA and DEC in review of the stack monitoring results and reporting of adverse events and equipment failures by the facility operator, Covanta Energy. The department also reviewed both the monitoring conducted at the stack on a continuous basis and reported quarterly to DEC, as well as the annual stack test that is performed by an independent contractor. At no time did the monitoring indicate constituents above levels of health concern. The annual stack test incorporates an extensive list of analytes that include metals and organics. All of the analytes were well below permit limits.

Soil and Ash Testing for Organics

Soil from seven routine soil sites collected in the spring of 2012 was analyzed for dioxins/furans (PCDD/PCDF), polychlorinated biphenyls (PCB's), and polycyclic aromatic hydrocarbons (PAH's). Ash, also collected in the spring of 2012, was analyzed for the same constituents.

Organic sample results are compared to published background data and U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles, EPA Preliminary Remediation Goals, and NYSDEC Soil Cleanup Objectives. In general, little change in levels of these compounds has been observed from background through the present organic screening period. The levels of organics in the ash were similar to reports for ash identified by other investigators and reported in published literature.

Each form of dioxin/furan has associated with it a toxic equivalency factor that is used to calculate a total toxic equivalency (TEQ) for each sample. Attachment A shows the historical dioxin/furan TEQ values for routine soil sites and ash samples. All levels remain well below the ATSDR and EPA action levels and there is no indication of a trend. For ash, dioxin/furan total TEQ remain fairly consistent. Ash is not homogeneous and an inconsistent result occurs occasionally. The results are similar to those reported by other investigators.

Attachment B shows the historical PCB values for routine soil sites and ash samples. All levels remain below the ATSDR and EPA action levels and there is no indication of a trend.

Soil and Ash Testing for Metals

Soil from the fourteen soil sites and ash were analyzed for ten different metals twice during the year (Spring and Fall). The metal results are issued in two different reports, one for soils and one for ash.

In 2011, due to improvements in the contract laboratory's equipment, the detection limits for beryllium, cadmium, and selenium have been lowered. Therefore there are detectable levels of these metals in many of the samples as compared to previous years.

Metal results are compared to background levels, published national averages for urban areas and a statewide rural soil survey. Soil and ash are not homogeneous and can contain materials that can account for an occasional inconsistent result. Hence, a single elevated or depressed value will not be assumed to be indicative of a change at a specific site. Rather, the pattern of values for that specific element must demonstrate a statistically significant difference, which may be indicative of a real environmental change. In general, the metal results for 2012 fall within the expected range of values for urban areas and demonstrate no significant variation from background levels.

Attachment C shows the historical levels for the ten metals at the routine soil sites. Due to the volume of data, the mean (average) of all routine sites and all routine control sites

for each year is presented. The complete report includes all of the data for each site. Attachment C-1 provides data on New York State Department of Environmental Conservation Soil Cleanup Objectives, a New York State rural soil survey, and USEPA soil screening levels for metals in residential soil.

Attachment D shows the historical levels of the ten metals in ash.

Summary and Conclusions

In general, the organic and metal results for this monitoring period are within the expected range for urban environments and are below any levels associated with health risk. Any fluctuations in sample results appear to be a reflection of the low levels detected, expected variation as a result of sample collection, preparation, and laboratory procedures, or possible variable levels due to past activities at a site. All levels remain below those associated with health concerns. The results should be viewed in the context of an ongoing program of environmental monitoring performed by the Onondaga County Health Department as a part of its overall Incinerator Monitoring Program. In the monitoring conducted to date, no relationship has been established between the operation of the incinerator and any significant increased levels of constituents in the environment.

The following are the detailed Incinerator Monitoring Program reports that have been issued on the 2012 soil and ash testing:

2012 Screening Summary for Organic Constituents 2012 Soil Metals Analysis Summary 2012 Ash Characterization Summary

Copies of these reports are available upon request.

The following abbreviations may be used in this report:

	As Atsor	Arsenic.
Roaic		Agency for Toxic Substances and Disease
Regis	Bo	Benyllium
	Cq	Cadmium
	CES	Cartified Environmental Services
	Cr	Chromium
		Coefficient of Variation
		Environmental Laboratory Services
	LLS Ha	Moreury
		Limit of Dotaction
		None Detection.
		more Delected.
	ug/g	Nickol
		Nickel. Opendage County Correctional Eacility
		Onondaga County Health Department
		Divergentia Hydrogerban
		Polyalomatic Hydrocarbon Delyebleringtod Pinhenyle
		Polychionnaled Diphenyls
Diavia	PCDD/PCDF	Polychionnaled Dibenzo-p-
DIOXII		
	PD pg/g	
	pg/g	picograms per gram
		parts per million.
	SD	Standard Deviation.
	Se	Selenium.
	SHFD	Sentinel Heights Fire Department
	V	Vanadium.
	VVIE	Waste to Energy Facility.
	Zn	
	~	approximately.
	<	Less than.
	>	Greater than.
	NA	Not applicable.
	NS	Not sampled.

Attachment A

Dioxin/Furnan TEQ Soil Results through Year 2012 (pg/g dry weight)

Routine Soil Sites

Site						Year								
	1994	1999	2000	2001	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012
Clark Reservation	1.8	1.2	2.27	1.42	1.23	2.03	1.90	1.76	1.73	1.26	***	1.64	***	1.75
Jamesville Beach	0.6	0.5	1.09	0.82	0.70	0.71	0.97	0.86	0.93	0.77	***	0.52	***	0.488
OCCF	0.79	2.2	1.68	1.47	1.26	1.38	5.54	1.52	1.94	1331.72@	1.72	***	2.13	***
DOT @ Jaquith	2		1.5	1.64	3.41	2.41	3.78	3.38	1.73	39.90@	2.62	***	3.95	***
Dutch Hill *	0.77		1.41	1.16	1.40	1.03	1.26	1.02	1.02	0.64	***	0.73	***	2.44
Erie - Poolsbrook*	1.39		1.5	1.14	1.86	**	**	**	**	**	**	**	**	**
Nottingham	0.51		0.78	0.79	0.80	0.70	0.94	0.85	0.84	0.74	0.76	***	0.43	***
SHFD	12		8.02	9.89	9.72	7.02	8.09	6.27	7.20	10.74	***	7.12	***	16
Sevier Rd	1.8		2.07	2.58	2.56	**	**	**	**	**	**	**	**	**
Beaver Lake *			0.51	0.53	0.85	0.70	0.72	0.64	0.69	0.65	0.38	***	0.5	***
Ch. 3 Towers			3.36	3.88	3.35	9.66	7.79	7.69	5.39	2.44	3.72	***	0.45	***
Gen.Crushed Stone			2.77	1.98	2.13	**	**	**	**	**	**	**	**	**
Highland Forest			1.18	1.24	0.96	**	**	**	**	**	**	**	**	**
JD High School			1.32	1.29	1.12	1.10	1.48	1.16	1.06	1.28	***	1.13	***	0.951
Nob Hill			0.93	0.91	0.90	6.83	1.01	1.00	1.07	1.05	***	0.78	***	0.488
Pratts Falls			0.91	0.98	0.77	0.87	0.98	0.83	0.94	1.17	0.82	***	0.94	***
Southwood			0.6	1.14	1.01	1.08	1.05	0.97	1.09	1.01	0.80	***	0.93	***
Syracuse University			3.11	6.97	9.47	13.89	3.14	3.66	12.96	0.67	***	2.45	***	1.63

* Denotes Control Sites

"Site to fourger sampled due to program re-evaluation
"*" Site not sampled this year. Sites are sampled every other year.
@ A single elevated value will not be assumed to be indicative of a change at a specific site, rather a pattern of values must demonstrate a statistically significant difference.

Combined Ash

Site	Year													
	1999-Spring	1999-Fall	2000-Fall	2001-Fall	2002-Fall	2004-Spring	2005-Spring	2006-Spring	2007-Spring	2008-Spring	2009-Spring	2010-Spring	2011-Spring	2012-Spring
Day 1 and 2	256	153	109	123	177	72	191	246	250	243	168	200	197	116
Day 3, 4, and 5	242	205	154	137	220	445	142	148	276	240	126	172	129	127

1

Note: For reference purposes, the ATSDR investigation level for Dioxin/Furan TEQ is 50 pg/g and the EPA clean up level is 1,000 pg/g.

Attachment B

Attachment B

PCB Results through Year 2012 (pg/g dry weight)

Routine Soil Sites

Site												
	2000	2001	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012
Clark Reservation	6010	2360	3150	2780	3610	2770	4110	2640	***	2960	***	2980
Jamesville Beach	1260	644	683	703	1110	781	1220	1610	***	589	***	707
OCCF	3080	5230	2000	2310	6940	3120	6320	2190	2810	***	2650	***
DOT @ Jaquith	16100	15400	45100	9220	67100	49100	18000	14200	34700	***	31800	***
Dutch Hill *	2210	1170	1400	1200	1380	1140	1450	1340	***	1060	***	2350
Erie - Poolsbrook *	2620	1400	2020	**	**	**	**	**	**	**	**	**
Nottingham	2140	2280	3610	1640	7380	2850	3050	2110	4200	***	2020	***
SHFD	3080	2970	1760	1900	2730	1610	2510	1730	***	2240	***	1260
Sevier Rd	1870	1600	2250	**	**	**	**	**	**	**	**	**
Beaver Lake *	1970	1210	5250	2650	1420	1360	1360	1370	2450	***	1110	***
Ch. 3 Towers	3360	2310	2490	1620	1830	1730	2220	1400	1510	***	723	***
General Crushed Stone	9430	3160	5450	**	**	**	**	**	**	**	**	**
Highland Forest	2120	1210	1270	**	**	**	**	**	**	**	**	**
JD High School	3580	1780	1732	1810	2640	1780	1720	2720	***	1750	***	1450
Nob Hill	3500	2480	2500	3440	2810	2970	2830	2950	***	2510	***	1820
Pratts Falls	1890	1840	1440	1620	1650	1220	1450	2050	1230	***	1910	***
Southwood	2240	2160	1150	1480	1470	1470	2750	1640	1640	***	1120	***
Syracuse University	10700	114000	11000	9510	6940	11400	10900	1170	***	78600	***	17400

* Denotes Control Sites

** Site no longer sampled due to program re-evaluation *** Site not sampled this year. Sites are sampled every other year.

Combined Ash

Site												
	2000-Fall	2001-Fall	2002-Fall	2004-Spring	2005-Spring	2006-Spring	2007-Spring	2008-Spring	2009-Spring	2010-Spring	2011-Spring	2012-Spring
Day 1 and 2	79000	22000	13600	7850	2470	5770	3080	23000	3100	5930	1260	1800
Day 3, 4, and 5	4700	7020	6580	38000	33000	57000	3060	5550	51900	8840	6060	20500

PCB results prior to 2000 were all less than detection limits. Starting in 2000 detection limits were lowered so that usable concentrations were available.

Note: For reference purposes, the ATSDR indicates that typical mean PCB concentrations in background soil are less than 100,000 pg/g

Attachment C

VII.A. Comparison of Annual Mean Values Routine and Routine Control Sites

VII.B. Comparison of Annual Mean Values Routine and Control Sites

VII.C. Comparison of Annual Mean Values Routine and Control Sites

VII.D. Comparison of Annual Mean Values Routine and Control Sites

VII.E. Comparison of Annual Mean Values Routine and Control Sites

VII.F. Comparison of Annual Mean Values Routine and Control Sites

VII.G. Comparison of Annual Mean Values Routine and Control Sites

VII.H. Comparison of Annual Mean Values Routine and Control Sites

VII.I. Comparison of Annual Mean Values Routine and Control Sites

VII.J. Comparison of Annual Mean Values Routine and Routine Control Sites

Attachment C-1

Metal	NYS SCO's for restricted use residential (ppm)	Rural Soil Survey (ppm)	USEPA Soil Screening levels for residential (ppm)
Arsenic	16 (0.21)	16	0.39
Beryllium	14	1.2	160
Cadmium	2.5 (0.86)	2.5	70
Chromium	36	30	280
Lead	400	133	400
Mercury	0.81	0.3	6.7
Nickel	140	29.5	1600
Selenium	36	4	390
Vanadium	NA	38	390
Zinc	2,200	180	23,000

New York State Department of Environmental Conservation Soil Cleanup Objectives. The Health Based SCO's were calculated considering all exposure pathways: ingestion, inhalation, dermal, carcinogenic (1 in a million cancer risk), and non-carcinogenic (using risk reference doses). The final health based SCO is based on the most conservative pathway calculation. In some cases the SCO has been modified to match background if the rural background levels for NYS are above the calculated SCO (the health based SCO is in parenthesis). Restricted use means no livestock or animal product consumption.

NYS Statewide Rural Surface Soil Survey (2005)-determined concentration ranges for 170 commonly assessed analytes in discrete surface soil samples collected at randomly selected rural NYS properties.

USEPA Soil Screening Levels for residential–Values were calculated based on the ingestiondermal exposure pathway for residential soils. These screening levels are not action levels or clean up levels, they are a tool for further evaluation. Attachment D

VII.A. Mean Values Ash Data Dry Weight

VII.B. Mean Values Ash Data Dry Weight

VII.C. Mean Values Ash Data Dry Weight

Onondaga County Health Department

Division of Environmental Health 421 Montgomery Street Syracuse, New York 13202

Incinerator Monitoring Program

2012 Soil Metals Analysis Summary

June 1, 2013

Submitted To: Cynthia B. Morrow, M.D., M.P.H. Commissioner of Health

Submitted By: Kevin L. Zimmerman Director, Division of Environmental Health

Contents:

- I. Table of Abbreviations.
- II. Introduction.
- II.A. Executive Introduction.
- III. Summary.
- IV. Soil Sample Site Locations, Maps of Soil Monitoring Sites.
- V. Element Specific Summaries.
- VI. Site Specific Summary Charts.
- VII. Routine Sites; Element specific mean comparison chart; Background 2011.
- VII.A. Routine Sites; Element specific mean comparison bar graph; As.
- VII.B. Routine Sites; Element specific mean comparison bar graph; Be.
- VII.C. Routine Sites; Element specific mean comparison bar graph; Cd.
- VII.D. Routine Sites; Element specific mean comparison bar graph; Cr.
- VII.E. Routine Sites; Element specific mean comparison bar graph; Pb.
- VII.F. Routine Sites; Element specific mean comparison bar graph; Hg.
- VII.G. Routine Sites; Element specific mean comparison bar graph; Ni.
- VII.H. Routine Sites; Element specific mean comparison bar graph; Se.
- VII. I. Routine Sites; Element specific mean comparison bar graph; V.
- VII. J. Routine Sites; Element specific mean comparison bar graph; Zn.
- Attachment A. NYSDEC Cleanup Objectives, NYS rural soil survey, USEPA screening levels.

As	Arsenic.
ATSDR	Agency for Toxic Substances and Disease Registry
Be	Beryllium.
Cd	Cadmium.
CES	Certified Environmental Services.
Cr	Chromium.
CV	Coefficient of Variation.
ELS	Environmental Laboratory Services.
Hg	Mercury.
LD	Limit of Detection.
ND	None Detected.
ug/g	micrograms per gram.
Ni	Nickel.
OCCF	Onondaga County Correctional Facility.
OCHD	Onondaga County Health Department.
PAH	Polyaromatic Hydrocarbon
PCB	Polychlorinated Biphenyls
PCDD/PCDF	Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans
Pb	Lead.
pg/g	picograms per gram
PPM	parts per million.
SD	Standard Deviation.
Se	Selenium.
SHFD	Sentinel Heights Fire Department
V	Vanadium.
WTE	Waste to Energy Facility.
Zn	Zinc.
~	approximately.
<	Less than.
>	Greater than.
NA	Not applicable.
NS	Not sampled.

II. Introduction:

The analysis of soil samples provides a useful and convenient mechanism for monitoring changes in the environment. Surface soil samples can be representative of deposition of atmospheric particulate materials, and normally provides a continuous, cumulative monitor for many such events. The soil sample analyses described in this report is part of an ongoing program of environmental monitoring performed by the Onondaga County Health Department as part of its overall Incinerator Monitoring Program.

This report represents data from the analyses of soils collected during the calendar year 2012, which is the eighteenth year of operation of the Waste to Energy (WTE) Facility. Three samples were collected at each site location during each sampling event. An independent contract laboratory created one composite sample from each sampling event and used this sample for metal content analysis.

II.A. Executive Introduction:

Metals analysis, along with sample composite preparation for this reporting period, was conducted by Life Science Laboratories, Inc. (formerly O'Brien and Gere Laboratory, Inc.) The collection of all environmental samples was, and continues to be, the responsibility of the Onondaga County Health Department's Division of Environmental Health.

Results of soil analyses from the start of the Incinerator Monitoring Program until June 1998 were reported exclusively on a wet weight basis. Starting with the second half of 1998, soil sample results have been reported on both a wet and dry weight basis. Each of these reported values provides important information regarding site specific data. Wet weight values provide ambient concentrations, the conditions in which soil may be ingested. This information is useful in determining risk assessment factors in environmental matrices. Wet weight values will be used for historical site comparison. Dry weight values will allow for better comparison with future metal concentrations, removing the factor of soil moisture variability and seasonal fluctuations. Dry weight values will tend to be higher than wet weight since the weight of the "inert" water is removed in the concentration calculations.

III. Summary:

In November 1994, the Onondaga County Resource Recovery Agency, in contract with the Covanta Energy Company (formerly Ogden Martin Company), commenced operation of a municipal solid waste incinerator. This undertaking was part of a multifaceted solid waste management program to achieve a reduction of volume of landfill waste, energy withdrawal and the removal of solids incompatible with incineration. Part of the management program for the reuse of materials and the removal of materials prior to the municipal waste stream had been started earlier.

The Onondaga County Health Department initiated a program in 1994 to include short and long term monitoring aspects to document any health implications to the public and environmental changes from the incinerator. In 2003 the monitoring program was re-evaluated to provide a more effective and efficient program. Direct interaction was established with the Onondaga County Resource Recovery Agency (OCCRA) and the New York State Department of Environmental Conservation (DEC) in providing stack monitoring results and improved assurance on reporting of adverse events and equipment failures. This allows for effective evaluation of short-term change in the incinerator emissions rather than the previous limited scope offsite air monitoring conducted over a nine year period. Several changes were implemented in 2009 based on the low levels of organic constituents detected in the monitoring conducted to date. and the fact that there is no evidence of a trend or levels associated with health risks. The fourteen routine soil sites (which include two control sites) continue to be sampled and analyzed twice a year for ten different metals. Half of the sites (7, including one control) are being tested for organics once a year and documented in a separate report. The four ash route sites have been eliminated from the program. These sites were located along the route that trucks take to carry ash across and out of the County. To date these sites have not shown any elevation of metals or organics and the trucks are covered at all times. Ash, directly from the incinerator continues to be analyzed for metals twice a year and organics once a year. The department continues to interact directly with OCCRA and DEC in review of stack monitoring results.

Fourteen soil sample sites are currently established as routine sites. Some of these sites were specifically chosen because of their proximity to the WTE facility, and their potential to show maximum impact from its operation (due either to a high likelihood of deposition or the impact of deposition on any areas with "sensitive individuals"). These sites included Southwood, Sentinel Heights, Channel 3 Towers, Jamesville Pen. DOT @ Jaquith and Clark Reservation. Sites such as Jamesville-Dewitt High School, The Nottingham, and Nob Hill Apartments were chosen because of their large population of "sensitive individuals" (i.e. the very young and the elderly). Regions at or near potentially high impact areas in publicly owned land were chosen to ensure long-term accessibility. These sites include Pratts Falls, Jamesville Beach, and Syracuse University. Two sites (Beaver Lake and Dutch Hill) have been established as routine control sites because they are considered to be outside the impact area of the WTE facility.

The individual values for each element are presented in this report as a means of evaluating the intra-site variation. Element mean values have been calculated based on results above the limit of detection for comparison with historical data. Further, we have prepared an overall summary of all the data points and their associated statistical parameters on an element-specific basis, as a means of evaluating inter-site variation as well.

It is anticipated that the primary basis for evaluation of potential environmental changes will be both site and element specific from a strictly statistical basis. Hence, a single elevated or depressed value will not be assumed to be indicative of a change at a specific site. Rather, the pattern of values for that specific element must demonstrate a statistically significant difference, which may be indicative of a real environmental change.

While this study was designed to be locally focused with a concern for potential environmental contamination of local origin, it is also hoped that this compilation of data may be a useful benchmark for the determination of subtle environmental impacts covering a large area, and not necessarily a function of local activities.

In 2011, due to improvements in laboratory equipment, the detection limits for beryllium, cadmium, and selenium were lowered. Therefore there are detectable levels of these metals in many of the soil samples starting in 2011 as compared to previous years.

The ten metals are discussed individually in the metal specific summaries, which follow. Levels of metals in soils can be compared with background levels (samples taken prior to the operation of the incinerator) and to national averages, as shown in the site specific summaries. In addition, Attachment A provides data on New York State Department of Environmental Conservation Soil Cleanup Objectives, a New York State rural soil survey, and USEPA soil screening levels for residential soil. In general, the metal results for the 2012 soil sampling year fall within the expected range of values. All levels remain below those associated with health concerns.

IV. Soil Sample Site Locations:

Routine Soil Monitoring Sites (*Denotes Control Sites):

1.	*Beaver Lake:	Beaver Lake County Park is located approximately 13 miles NW of the City of Syracuse in the Town of Lysander. The sample site is located in the overflow parking area, in the SE corner of the park.
2.	Clark Reservation:	Clark Reservation State Park is located approximately 0.5 miles SE of the WTE facility on Route 173. The sample site is in an open grassy area, adjacent to the basketball court.
3.	*Dutch Hill Road:	The sampling site is located on the Dutch Hill Road Radio Tower site, approximately 11 miles SSW of the City of Syracuse, in the Town of Otisco.
4.	Jamesville Beach:	The Jamesville Beach County Park is located on the western shore of the Jamesville Reservoir, off Apulia Road. The sample site is near the entrance of the park.
5.	Jamesville-DeWitt H.S.:	The Jamesville-DeWitt High School is approximately 3.5 miles ENE of the WTE facility. The sample site is located on the southern edge of the property, near the bus garage.
6.	Nob Hill:	The Nob Hill Apartments are located between Seneca Turnpike and Lafayette Road. The sampling site is located near the rental office building.
7.	Nottingham:	The Nottingham Retirement Complex is located approximately 2 miles ENE of the WTE facility on Nottingham Road. The sample site is in the NE corner of the property, adjacent to the maintenance garage.
8.	Syracuse University:	The Syracuse University site is located approximately 1/2 mile north of the WTE facility, near the Skytop administrative building. The sample site is adjacent to the radio towers.
9.	Channel 3 Tower:	The Channel 3 Tower site (formerly Tennessee Gas site) is approximately 4 miles south of the WTE on Sentinel Heights Road. The tower site is just south of the Sentinel Heights Road / Bull Hill Road intersection.
10.	Jamesville Pen.:	The Jamesville Penitentiary (Onondaga County Correctional Facility) is located on Route 173, just east of the village of Jamesville. The sample site is adjacent to the sewage treatment plant.
11.	Southwood:	The Southwood Park is located approximately 1 mile south of the WTE facility, off Barker Hill Road and Southwood Park Drive. The sample site is adjacent to the picnic area.

12. Sentinel Heights:	The Sentinel Heights Fire Department is located on Dave Tilden Road, approximately 2.5 miles SSW of the WTE facility. The sampling site is on the lawn, just east of the building.
13. DOT @ Jaquith:	The Onondaga County DOT property site borders Brighton Ave, the Jaquith Industries property and Route 81, near the Route 481 - Route 81 interchange. The sampling site is located in the middle of the grassy open field.
14. Pratts Falls:	The Pratts Falls County Park is located approximately 2 miles NNE of the Village of Pompey. The sample site is in the center of the park, in an open recreation area.

•

.

V. Element Specific Summaries:

A. Arsenic

Soil levels of Arsenic range from 1 - 40 ppm nationwide, while NYS levels average 16 ppm. Routine site values in the 2012 study varied from 3.2 ppm wet weight (3.8 ppm dry wt) to a high value of 8.3 ppm wet weight (11.0 ppm dry wt), and a mean value of 5.23 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the lower range of nationwide and NYS averages.

B. Beryllium

Soil levels of beryllium range from 0.01 - 10 ppm nationwide, while NYS levels average 1.2 ppm. Routine site values in the 2012 study varied from 0.28 ppm wet weight (0.32 ppm dry wt) to a high value of 1.1 ppm wet weight (1.5 ppm dry wt), and a mean value of 0.54 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

C. Cadmium

Soil levels for cadmium are highly variable and average ~0.25 ppm nationwide, while NYS levels average 2.5 ppm. Routine site values in the 2012 study varied from 0.12 ppm wet weight (0.15 ppm dry wt) to a high value of 1.1 ppm wet weight (1.4 ppm dry wt), and a mean value of 0.51 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

D. Chromium

Soil levels of chromium are highly variable, ranging from "trace" to thousands of ppm nationwide, while NYS levels average 30 ppm. Routine site values in the 2012 study varied from 8.8 ppm wet weight (11.0 ppm dry wt) to a high value of 26.0 ppm wet weight (32.0 ppm dry wt), and a mean value of 14.2 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

E. Lead

Soil levels of lead range from <10 to 30 ppm nationwide, with NYS averaging 133 ppm in rural areas. Higher levels can occur as a function of proximity to vehicular traffic.

Routine site values in the 2012 study varied from 6.0 ppm wet weight (7.0 ppm dry wt) to a high value of 56.0 ppm wet weight (69.0 ppm dry wt), and a mean value of 17.4 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

F. Mercury

Soil levels of mercury range from 0.02 to 0.60 ppm nationwide, while NYS levels average 0.3 ppm. Routine site values in the 2012 study varied from 0.054 ppm wet weight (0.069 ppm dry wt) to a high value of 0.091 ppm wet weight (0.12 ppm dry wt), and a mean value of 0.07 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

G. Nickel

Soil levels of nickel range from 4 to 80 ppm nationwide, while NYS levels average 29.5 ppm. Routine site values in the 2012 study varied from 8.2 ppm wet weight (9.6 ppm dry wt) to a high value of 30.0 ppm wet weight (38.0 ppm dry wt), and a mean value of 16.7 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

H. Selenium

Soil levels of selenium range from 0.01 to 0.20 ppm nationwide, while NYS levels average 4 ppm. There were no routine site samples above the detection limit for selenium.

I. Vanadium

Soil levels of vanadium range from 3 to 310 ppm nationwide, while NYS levels average 38 ppm. Routine site values in the 2012 study varied from 14.0 ppm wet weight (18.0 ppm dry wt) to a high value of 29.0 ppm wet weight (38.0 ppm dry wt), and a mean value of 18.5 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

J. Zinc

Soil levels of zinc range from 10 to 300 ppm nationwide, while NYS levels average 180 ppm. Routine site values in the 2012 study varied from 24.0 ppm wet weight (28.0 ppm dry wt) to a high value of 110.0 ppm wet weight (130.0 ppm dry wt), and a mean value of 51.4 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

2012 Soil Summary Data; Beaver Lake (ppm; ug/g)

			Spring 2012			Fall 2012		
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)
Arsenic	1.0 - 40	3.51	4.4		5.1	4.1		5.2
Beryllium	.01-10	0.22	0.27		0.31	0.28		0.36
Cadmium	~0.25	<0.1	<0.1		<0.12	0.27		0.34
Chromium	trace-thousands	5.63	5.9		6.8	6.2		7.9
Lead	<10 - 30	6.02	8.6		9.9	9.3		12
Mercury	.0206	0.024	<.050		<0.058	<.050		<0.063
Nickel	4.0 -80	5.72	6		7	5.3		6.7
Selenium	.012	0.227	<0.5		<0.58	<0.5		<0.63
Vanadium	3.0 -310	8.72	11		13	12		15
Zinc	10.0 -300	22.7	22		25	25		32

2012 Soil Summary Data; Clark Reservation (ppm; ug/g)

			Spring 2012		Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	4.87	7.4	9.9	7.1	9.6
Beryllium	0.01-10	0.5	1.1	1.5	1.1	1.4
Cadmium	~0.25	0.26	0.43	0.58	0.62	0.83
Chromium	trace-thousands	11.83	15	20	15	21
Lead	<10-30	15.03	22	29	20	27
Mercury	0.02-0.6	0.063	0.091	0.12	0.078	0.11
Nickel	4.0-80	13.39	15	20	17	22
Selenium	0.01-0.2	0.259	<0.5	<0.67	<0.50	<0.67
Vanadium	3.0-310	11.26	20	27	21	28
Zinc	10.0-300	30.7	28	38	34	45

2012 Soil Summary Data; Dutch Hill (ppm; ug/g)

			Spring 2012			Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	4.58	5.8		7.8	5.9	8.1
Beryllium	0.01-10	0.16	0.59		0.79	0.52	0.7
Cadmium	~0.25	0.15	0.57		0.77	0.69	0.94
Chromium	trace-thousands	10.14	14		18	13	18
Lead	<10-30	15.19	22		30	19	26
Mercury	0.02-0.6	0.048	0.063		0.085	<0.05	<0.068
Nickel	4.0-80	12.45	16		22	15	21
Selenium	0.01-0.2	0.3	<0.50		<0.67	<0.5	<0.68
Vanadium	3.0-310	9.96	19		26	18	24
Zinc	10.0-300	55.8	91		120	80	110

2012 Soil Summary Data; Jamesville Beach (ppm; ug/g)

			Spring 2012		Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	2.99	8.1	10	3.8	4.7
Beryllium	0.01-10	0.26	0.88	1.1	0.41	0.51
Cadmium	~0.25	0.16	0.47	0.6	0.31	0.39
Chromium	trace-thousands	9.73	23	29	11	14
Lead	<10-30	8.77	20	26	9.8	12
Mercury	0.02-0.6	0.037	<0.05	<0.063	<0.05	<0.062
Nickel	4.0-80	13.62	30	38	16	20
Selenium	0.01-0.2	0.236	<0.5	<0.63	<0.5	<0.62
Vanadium	3.0-310	9.12	29	36	14	18
Zinc	10-300	27.3	65	82	33	42

2012 Soil Summary Data; Jamesville Dewitt H.S. (ppm; ug/g)

			Spring 2012		Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	4.98	4.7	6.2	4.7	6.1
Beryllium	0.01-10	0.23	0.5	0.65	0.54	0.7
Cadmium	~0.25	0.17	0.12	0.15	0.64	0.83
Chromium	trace-thousands	11.37	16	21	18	23
Lead	<10-30	12.9	15	20	13	17
Mercury	0.02-0.6	0.041	<0.05	<0.065	0.062	0.08
Nickel	4.0-80	12.07	15	20	19	24
Selenium	0.01-0.2	0.32	<0.5	<0.65	<0.5	<0.64
Vanadium	3.0-310	11.08	19	25	20	28
Zinc	10-300	33.5	54	70	51	66

2012 Soil Summary Data; Nob Hill (ppm; ug/g)

			Spring 2012			Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.))	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	3.75	3.9	4.9		3.9	4.7
Beryllium	0.01-10	0.23	0.43	0.53		0.42	0.5
Cadmium	~0.25	0.17	0.17	0.21		0.54	0.65
Chromium	trace-thousands	8.94	11	13		11	14
Lead	<10-30	11.74	13	16		14	17
Mercury	0.02-0.6	0.037	<0.05	<0.063		<0.05	<0.061
Nickel	4.0-80	12.65	12	15		11	14
Selenium	0.01-0.2	0.355	<0.5	<0.63		<0.5	<0.61
Vanadium	3.0-310	10.15	15	19		17	20
Zinc	10-300	26.5	31	39		33	40

2012 Soil Summary Data; The Nottingham (ppm; ug/g)

			Spring 2012			Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	4.4	3.7		4.7	4.8	6.2
Beryllium	0.01-10	0.29	0.53		0.66	0.55	0.71
Cadmium	~0.25	0.21	0.24		0.3	0.57	0.73
Chromium	trace-thousands	10.41	16		20	16	20
Lead	<10-30	8.13	9.3		12	12	16
Mercury	0.02-0.6	<0.50	<0.05		<0.063	0.054	0.069
Nickel	4.0-80	11.26	16		21	16	21
Selenium	0.01-0.2	0.334	<0.5		<0.63	<0.50	<0.64
Vanadium	3.0-310	10.16	15		19	19	24
Zinc	10-300	31.6	41		51	52	67

2012 Soil Summary Data; Syracuse University (ppm; ug/g)

			Spring 2012			Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	3.15	3.2		3.8	4.1	5.6
Beryllium	0.01-10	0.3	0.28		0.32	0.41	0.56
Cadmium	~0.25	0.22	<.1		<0.12	0.57	0.77
Chromium	trace-thousands	9.3	11		13	14	18
Lead	<10-30	13.41	6		7	15	20
Mercury	0.02-0.6	0.046	<0.05		<0.59	<0.05	<0.067
Nickel	4.0-80	11	8.2		9.6	13	17
Selenium	0.01-0.2	0.306	<0.5		<0.59	<0.5	<0.67
Vanadium	3.0-310	10.49	17		20	17	23
Zinc	10-300	33.4	24		28	48	65

2012 Soil Summary Data; Channel 3 Tower (ppm; ug/g)

			Spring 2012			Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	5.24	4.5		6.9	6.4	8.3
Beryllium	0.01-10	0.16	0.49		0.76	0.59	0.76
Cadmium	~0.25	0.34	0.31		0.48	1.1	1.4
Chromium	trace thousands	9.83	11		17	15	19
Lead	<10-30	11.18	13		20	14	18
Mercury	0.02-0.6	0.046	<0.05		<0.078	0.057	0.073
Nickel	4.0-80	13.49	15		23	25	32
Selenium	0.01-0.2	0.355	<0.5		<0.78	<0.5	<0.65
Vanadium	3.0-310	8.27	15		23	17	23
Zinc	10-300	56.4	61		95	73	94

2012 Soil Summary Data; Jamesville Pen. (OCCF) (ppm; ug/g)

			Spring 2012			Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	6.4	5.4		7.1	8.3	11
Beryllium	0.01-10	0.29	0.39		0.51	0.53	0.67
Cadmium	~0.25	0.25	0.22		0.29	0.92	1.2
Chromium	trace-thousands	9.8	8.8		11	13	16
Lead	<10-30	18.38	18		23	20	25
Mercury	0.02-0.6	0.053	<0.05		<0.065	0.059	0.076
Nickel	4.0-80	20.53	19		25	30	38
Selenium	0.01-0.2	0.38	<0.5		<0.65	<0.50	<0.64
Vanadium	3.0-310	12.03	14		18	17	22
Zinc	10-300	38.7	46		60	53	68

2012 Soil Summary Data; Southwood (ppm; ug/g)

			Spring 2012			Fall 2012		
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)
Arsenic	1.0-40	3.23	4		5.6	5		6.8
Beryllium	0.01-10	0.31	0.48		0.67	0.63		0.86
Cadmium	~0.25	0.24	0.19		0.27	0.92		1.2
Chromium	trace-thousands	12.17	12		17	16		22
Lead	<10-30	11.95	12		16	14		18
Mercury	0.02-0.6	0.045	<0.05		<0.07	<0.05		<0.068
Nickel	4.0-80	13.39	13		18	15		21
Selenium	0.01-0.2	0.353	<0.5		<0.7	<0.5		<0.68
Vanadium	3.0-310	13.14	16		23	20		27
Zinc	10-300	44.1	46		65	52		71

2012 Soil Summary Data; Sentinel Heights (ppm; ug/g)

			Spring 2012			Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	4.71	6.2		9	6.3	8.8
Beryllium	0.01-10	0.41	0.59		0.86	0.59	0.83
Cadmium	~0.25	0.44	0.4		0.59	0.92	1.3
Chromium	trace-thousands	9.98	12		17	13	18
Lead	<10-30	13.16	15		22	15	21
Mercury	0.02-0.6	0.043	<0.05		<0.073	0.05	0.07
Nickel	4.0-80	17.06	19		27	19	27
Selenium	0.01-0.2	0.511	<0.5		<0.73	<0.5	<0.7
Vanadium	3.0-310	14.22	21		30	22	 31
Zinc	10-300	46.9	58		84	58	 81

2012 Soil Summary Data; DOT@Jaquith Industries (ppm; ug/g)

			Spring 2012		Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	3.46	5.3	6.7	6.8	8.4
Beryllium	0.01-10	0.21	0.41	0.52	0.48	0.6
Cadmium	~0.25	0.13	0.38	0.48	0.93	1.1
Chromium	trace-thousands	10.17	14	18	26	32
Lead	<10-30	29.67	55	69	55	67
Mercury	0.02-0.6	0.043	0.061	0.1	0.085	0.1
Nickel	4.0-80	9.44	16	20	19	23
Selenium	0.01-0.2	0.15	<0.5	<0.63	<0.50	0.061
Vanadium	3.0-310	8.6	15	18	18	22
Zinc	10-300	34.1	94	120	110	 130

2012 Soil Summary Data; Pratts Falls (ppm; ug/g)

			Spring 2012		Fall 2012	
Element	National Average	Background Mean 1994 (wet wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	2.51	4.4	6.1	4.2	5.5
Beryllium	0.01-10	0.12	0.35	0.48	0.38	0.49
Cadmium	~0.25	0.22	0.32	0.44	0.4	0.52
Chromium	trace-thousands	9.05	12	17	11	15
Lead	<10-30	11.18	15	21	13	17
Mercury	0.02-0.6	0.034	<0.05	<0.70	<0.05	<0.065
Nickel	4.0-80	9.62	11	15	12	16
Selenium	0.01-0.2	0.269	<0.5	<0.7	<0.5	<0.65
Vanadium	3.0-310	11.44	23	32	20	25
Zinc	10-300	28.4	45	63	44	57

VII. Routine Sites Mean Comparison

Soil Metal Analysis - ug/g wet weight	As	Be	Cd	Cr	Pb	Hg	Ni	Se	V	Zn
						-				
Background Mean - Routine Sites	3.95	0.21	0.2	9.99	13.2	0.05	12.7	0.35	10.6	35.6
Background Mean - Routine Control Sites	3.7	0.16	0.1	9.71	10.5	0.04	10	0.26	10.2	36
1995 Mean - Routine Sites	3.61	0.32	0.32	12.7	14.7	0.05	15	0.48	13.8	45.3
1995 Mean - Routine Control Sites	3.8	0.21	0.3	12.2	14.4	0.04	12.3	0.39	14.3	50.3
1996 Mean - Routine Sites	3.78	0.29	0.25	12.6	12.9	0.06	14.2	0.3	15	43.4
1996 Mean - Routine Control Sites	2.84	0.2	0.34	12	13.7	0.05	9.95	0.22	15.1	48.2
1997 Mean - Routine Sites	4.01	0.28	0.31	11.6	12.3	0.06	13	0.37	13.4	37.4
1997 Mean - Routine Control Sites	3.52	0.13	0.18	10.3	11.8	NA	10.1	0.27	11.4	41.3
1998 Mean - Routine Sites	3.28	0.47	0.21	9.23	13.5	0.08	12.3	1.32	12.4	41.4
1998 Mean - Routine Control Sites	3.55	0.36	0.15	8.42	11.7	NA	9.54	NA	12.3	35.5
1000 Moon Bouting Sites	2.60	0.44	0.24	10.0	17.0	0.05	15	1.24	15.0	44.0
1999 Mean - Routine Sites	3.09	0.44	0.34	12.8	17.3	0.05	11 4	1.24 NA	15.8	44.9
1999 Mean - Routine Control Sites	3.72	0.32	0.25	12.2	12.0	INA	11.4	INA	10.0	45
2000 Mean - Routine Sites	3 21	0.7	0.56	10.55	16.02	0.05	12 53	0.84	13.84	41.46
2000 Mean - Routine Control Sites	3	NA	NA NA	9.12	11 41	0.05	9.7	NA	12.07	37.39
	Ū			0.12		0.00	0.1	10/1	12.07	07.00
2001 Mean - Routine Sites	3.71	0.56	0.63	12.24	15.65	0.06	15.01	0.79	14.75	45.07
2001 Mean - Routine Control Sites	4.66	0.49	0.77	12.03	14.08	0.05	12.26	5.11	13.85	44.51
			-				-	-		
2002 Mean - Routine Sites	3.5	0.62	NA	11.96	16.4	0.07	13.71	0.83	16.08	41.02
2002 Mean - Routine Control Sites	3.3	NA	NA	11.99	11.43	0.04	11.46	0.51	14.24	42.87
2003 Mean - Routine Sites	3.35	NA	0.56	11.65	10	0.05	12.17	NA	14.32	36.08
2003 Mean - Routine Control Sites	2.87	NA	0.53	15.24	8.76	NA	10.29	NA	15.08	36.26
2004 Mean - Routine Sites	4.83	1.03	NA	13.1	16.6	NA	15.12	0.91	16.34	48.79
2004 Mean - Routine Control Sites	4.11	NA	NA	8.26	11.15	NA	8.67	0.75	12.58	43.23
2005 Mean - Routine Sites	5.34	1.11	2.75	13.51	20.64	0.1	16.98	0.77	16.94	50.34
2005 Mean - Routine Control Sites	4.65	NA	NA	9.85	13.97	NA	10.2	0.93	13.87	51.55
2006 Mean - Routine Sites	5.07	NA	NA	14.16	19.92	NA	17.2	0.9	18.68	55.98
2006 Mean - Routine Control Sites	4.52	NA	NA	9.72	13.67	NA	10.6	0.89	14.93	49.46
2007 Maan Bauting Sites	E 11	1.05	NIA	11 12	17 15	0.09	17.14	1.01	17.01	50.05
2007 Mean - Routine Control Sites	4.42	1.05 ΝΔ	NA NA	9.42	12.01	0.08	9.46	1.21	13.62	52.5
	7.72	11/3	11/3	5.42	12.51	0.00	5.40	1.10	10.02	52.5
2008 Mean - Routine Sites	5.81	1.14	NA	14.16	52.02	0.1	18.16	1.33	18.08	72.83
2008 Mean - Routine Control Sites	4.96	NA	NA	8.36	11.67	NA	8.87	NA	13.73	38.1
					-					
2009 Mean- Routine Sites	5.1	1.13	NA	12.99	16.66	0.07	16.69	1.14	16.73	53.85
2009 Mean- Routine Control Sites	4.45	NA	NA	9.33	13.01	NA	10.56	NA	13.97	51.28
2010 Mean-Routine Sites	5.75	1.13	NA	14.08	24.9	0.08	17.8	1.14	18.6	57.91
2010 Mean- Routine Control Sites	4.93	NA	NA	30.5	13.2	NA	17.7	1.2	15.5	54.8
		0.55	0.51		46.5	0.00	10.5		46 -	05
2011 Mean-Routine Sites	5.57	0.56	0.21	14.32	19.8	0.06	16.9	0.8	19.7	65.75
	4.9	0.4	0.10	0.01	13.8	NA	10.6	0.82	10.3	53.3
2012 Mean-Routine Sites	5.23	0.54	0.51	14.2	17.4	0.07	16.7	NA	18.5	51.4
2012 Mean-Routine Control Sites	5.1	0.42	0.51	9.8	13.1	0.06	10.6	NA	15	54.5

VII.A. Comparison of Annual Mean Values Routine and Routine Control Sites

VII.B. Comparison of Annual Mean Values Routine and Control Sites

VII.C. Comparison of Annual Mean Values Routine and Control Sites

VII.D. Comparison of Annual Mean Values Routine and Control Sites

VII.E. Comparison of Annual Mean Values Routine and Control Sites

VII.F. Comparison of Annual Mean Values Routine and Control Sites

VII.G. Comparison of Annual Mean Values Routine and Control Sites

VII.H. Comparison of Annual Mean Values Routine and Control Sites

VII.I. Comparison of Annual Mean Values Routine and Control Sites

VII.J. Comparison of Annual Mean Values Routine and Routine Control Sites

Metal	NYS SCO's for restricted use	Rural Soil	USEPA Soil Screening levels for residential (ppm)			
	residential (ppm)	Survey (ppin)	residential (ppin)			
Arsenic	16 (0.21)	16	0.39			
Beryllium	14	1.2	160			
Cadmium	2.5 (0.86)	2.5	70			
Chromium	36	30	280			
Lead	400	133	400			
Mercury	0.81	0.3	6.7			
Nickel	140	29.5	1600			
Selenium	36	4	390			
Vanadium	NA	38	390			
Zinc	2,200	180	23,000			

New York State Department of Environmental Conservation Soil Cleanup Objectives. The Health Based SCO's were calculated considering all exposure pathways:ingestion, inhalation, dermal, carcinogenic (1 in a million cancer risk), and non-carcinogenic (using risk reference doses). The final health based SCO is based on the most conservative pathway calculation. In some cases the SCO has been modified to match background if the rural background levels for NYS are above the calculated SCO (the health based SCO is in parenthesis). Restricted use means no livestock or animal product consumption.

NYS Statewide Rural Surface Soil Survey (2005)-determined concentration ranges for 170 commonly assessed analytes in discrete surface soil samples collected at randomly selected rural NYS properties.

USEPA Soil Screening Levels for residential–Values were calculated based on the ingestiondermal exposure pathway for residential soils. These screening levels are not action levels or clean up levels, they are a tool for further evaluation. Onondaga County Health Department Division of Environmental Health 421 Montgomery Street Syracuse, New York 13202

Incinerator Monitoring Program

2012 Ash Characterization Summary

June 1, 2013

Submitted To: Cynthia B. Morrow, M.D., M.P.H. Commissioner of Health

Submitted By: Kevin L. Zimmerman Director, Division of Environmental Health

Contents:

- I. Table of Abbreviations.
- II. Executive Summary.
- III. Introduction.
- IV. Element Specific Summary.
- V. Summary and Conclusions.
- VI. Wet Weight Ash Metal Analysis Data: Fall 1995 to Fall 2011.
- VI.A. Wet Weight Mean Values Ash Data Graph: As, Cd, Cr, Ni, V
- VI.B. Wet Weight Mean Values Ash Data Graph: Be, Hg, Se
- VI.C. Wet Weight Mean Values Ash Data Graph: Pb, Zn
- VII. Dry Weight Ash Metal Analysis Data: Fall 1998 to Fall 2011.
- VII.A. Dry Weight Mean Values Ash Data Graph: As, Cd. Cr, Ni, V
- VII.B. Dry Weight Mean Values Ash Data Graph: Be, Hg, Se
- VII.C. Dry Weight Mean Values Ashe Data Graph: Pb, Zn
- VIII. NYSDEC Ash Residue Characterization Project, 1992, Summary of Ash Results.

I. Table of Abbreviations

The following abbreviations may be used throughout this report:

As	Arsenic.
Be	Beryllium.
Cd	Cadmium.
CES	Certified Environmental Services.
Cr	Chromium.
CV	Coefficient of Variation.
ELAP	Environmental Laboratory Approval Program.
ELS	Environmental Laboratory Services.
Hg	Mercury.
LD	Limit of Detection.
Ni	Nickel.
NYSDEC	New York State Department of Environmental Conservation.
OCHD	Onondaga County Health Department.
Pb	Lead.
ppm	parts per million.
ug/g	micrograms per gram (= ppm).
SD	Standard Deviation.
Se	Selenium.
V	Vanadium.
WTE	Waste To Energy Facility.
Zn	Zinc.
~	approximately.
<	Less than.
>	Greater than.
NA	Not applicable.

Note: Values <LD were not included in average, SD and CV calculations.

II. Executive Summary

Sample analyses for the 2012 ash characterization study were conducted by Life Science's Laboratories, Inc. (formerly O'Brien and Gere Laboratories, Inc.). As has been the format since the Fall 1998 reporting period, the year 2012 results have been reported on both a wet weight and dry weight basis. Results through the Spring 1998 reporting period were reported exclusively on a wet weight basis. Each of these reported values provides important information regarding ash metal data. Wet weight values will be used for historical comparison relative to the conditions of the ash as it leaves the WTE Facility. Dry weight values will allow for better comparison with future metal concentrations, removing the variability of ash moisture content. Dry weight values will tend to be higher than wet weight since the weight of the "inert" water is removed in the concentration calculations.

This report uses the individual metal "mean plus three standard deviations" as a benchmark for consistent results. Calculations include all wet weight data through the Fall 2012 sampling period. This standard is supported by the NYSDEC data in which at least 95% of the individual metal results are within the "mean plus three standard deviations" for the respective metals. It is evident by looking at the data from this report and the NYSDEC data that there will be occasional results outside of this benchmark. Occasional outlying sample results are not considered to be of significance. Such results may be due to the fact that, while every effort is used to create a homogeneous combined ash sample, it is not feasible to obtain such a sample because of the presence of incombustible "chunks" in the bottom ash.

Ash collection and compositing continues to be the responsibility of Covanta Energies Systems of Onondaga under NYSDEC protocols. The Health Department and Covanta Energies utilize split samples to ensure the most accurate results.

III. Introduction

The purpose of this study is to provide part of an ongoing evaluation of ash generated at the Onondaga County Resource Recovery Agency Waste-To-Energy facility. The results summarized in this report reflect analysis of combined fly and bottom ash samples from Fall 1995 through Fall 2012. The ash samples were analyzed for total metal concentration for arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, selenium, vanadium and zinc.

In 2011, due to improvements in laboratory equipment, the detection limits for beryllium, cadmium, and selenium have been lowered. Therefore there are detectable levels of these metals in many of the ash samples starting in 2011 as compared to previous years.

As part of our evaluation of the metals content of the ash samples, the average value concentrations from each semiannual sampling period are compared to the analogous values from the combined ash samples from the NYSDEC "Ash Residue Characterization Project" (1992). Average and standard deviation calculations do not include those results less than a limit of detection.

The results in this report represent total metal content in the combined fly and bottom ash from the WTE Facility. The standard test for determining the leachability of constituents of combined ash is the TCLP protocol established by the USEPA and accepted by the NYSDEC. Total metal content is not necessarily indicative of the leachability of contaminants from the ash.

IV. Element Specific Summary

Arsenic

Ash sample values in the 2012 study varied from 22.0 ppm wet weight (43.0 ppm dry wt) to a high value of 93.0 ppm wet weight (120.0 ppm dry wt). There were no arsenic results above the mean + 3SD level of 106 ppm wet weight.

The distribution and average for arsenic during the 2012 sampling period is consistent with the NYSDEC mean arsenic value of 19.1 ppm.

Beryllium

Ash sample values in the 2012 study varied from 0.34 ppm wet weight (0.46 ppm dry wt) to a high value of 1.0 ppm wet weight (1.4 ppm dry wt). One ash sample had a beryllium value above the mean + 3SD level of 0.87 ppm wet weight.

Beryllium was not evaluated in the DEC study.

Cadmium

Ash sample values in the 2012 study varied from 27.0 ppm wet weight (32.0 ppm dry wt) to a high value of 64.0 ppm wet weight (78.0 ppm dry wt). There were no cadmium results above the mean + 3SD level of 84.7 ppm wet weight.

The distribution and average for cadmium during the 2012 sampling period is consistent with the NYSDEC mean cadmium value of 33.6 ppm.

Chromium

Ash sample values in the 2012 study varied from 43.0 ppm wet weight (57.0 ppm dry wt) to a high value of 180.0 ppm wet weight (230.0 ppm dry wt). One ash sample had a chromium value above the mean + 3SD level of 152.7 ppm wet weight.

The distribution and average for chromium during the 2012 sampling period is very consistent with the NYSDEC mean chromium value of 259 ppm. The DEC average value of 259 ppm is skewed by a single outlying sample result.

Lead

Ash sample values in the 2012 study varied from 400 ppm wet weight (530 ppm dry wt) to a high value of 2,000 ppm wet weight (2,400 ppm dry wt). There were no lead results above the mean + 3SD level of 2,195 ppm wet weight.

The distribution and average for lead during the 2012 sampling period is consistent with the NYSDEC mean lead value of 1,558 ppm.

Mercury

Ash sample values in the 2012 study varied from 1.4 ppm wet weight (1.8 ppm dry wt) to a high value of 6.4 ppm wet weight (8.7 ppm dry wt). There were no mercury results above the mean + 3SD level of 7.3 ppm wet weight.

The distribution and average for mercury during the 2012 sampling period is very consistent with the NYSDEC mean mercury value of 10.9 ppm.

Nickel

Ash sample values in the 2012 study varied from 23.0 ppm wet weight (31.0 ppm dry wt) to a high value of 95.0 ppm wet weight (120.0 ppm dry wt). There were no nickel results above the mean + 3SD level of 110 ppm wet weight.

The distribution and average for nickel during the 2012 sampling period is significantly lower than the NYSDEC mean nickel value of 658 ppm.

Selenium

Ash sample values in the 2012 study varied from 0.5 ppm wet weight (0.62 ppm dry wt) to a high value of 2.7 ppm wet weight (3.6 ppm dry wt). There were no selenium results above the mean + 3SD level of 2.73 ppm wet weight.

The distribution and average for selenium during the 2012 sampling period is very consistent with the NYSDEC mean selenium value of 2.66 ppm.

Vanadium

Ash sample values in the 2012 study varied from 23.0 ppm wet weight (31.0 ppm dry wt) to a high value of 45.0 ppm wet weight (55.0 ppm dry wt). There were no vanadium results above the mean + 3SD level of 45.1 ppm wet weight.

Vanadium was not evaluated in the DEC study.

Zinc

Ash sample values in the 2012 study varied from 2,800 ppm wet weight (3,700 ppm dry wt) to a high value of 17,000 ppm wet weight (21,000 ppm dry wt). One ash sample had a zinc value above the mean + 3SD level of 14,174 ppm wet weight.

The distribution and average for zinc during the 2012 sampling period is consistent with the NYSDEC mean zinc value of 3,666 ppm.
V. Summary and Conclusions

The data contained in this report indicates consistent levels for all metals in the combined ash residue throughout the first seventeen years of operation. The samples from the Fall 1995 to Fall 2012 sampling periods are also consistent with those of the NYSDEC "Ash Residue Characterization Project".

The Health Department recognizes that there are inherent difficulties in using the NYSDEC study for comparison. The DEC study uses several different ash producing sources for their data. Also, the data is from a very specific time period. It does not take into account changes in the municipal solid waste stream due to time of year, increased recycling efforts, etc. However, results from the Health Department's study have shown that these variables have little significant effect on the total metal concentration in the ash. This is apparent when looking at the individual results and the sampling period averages over time. Well over 95% of the individual results from the ash characterization studies to date are within the "mean plus three standard deviation" criteria. Additionally, average metal values for each of the sampling periods show little relative change throughout the time frame of this report.

SAMPLE							· · · · · · · · · · · · · · · · · · ·		I	· · · · · ·	
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Ηα	Ni	Se	v	70
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercurv	Nickel	Selenium	Vanadium	Zinc
<u> 11/15 - 16/95</u>	951158	18.7	<.1	42.3	49.2	1189	5.87	44.8	2 00	10.02	2771
<u>11/16 - 17/95</u>	951159	18.7	0.13	36.7	42.2	866	4 26	50.3	1.60	10.02	2200
11/17/95	951160	16.8	0.15	37.7	41 1	1095	3.27	/2.0	1.05	0.70	3200
11/17/95	951161	14.1	<1	45.0	51.0	1164	5.27	- 40.9 	1.00	9,72	3593
11/17 - 18/95	951162	12.5	< 1	30.7	59.7	1007	2.04	30.3	00.1	9.74	3994
11/18/95	951163	11.0	0.12	54.0	44.0	1007	3.94	42.5	1.83	10.06	8225
11/10/05	051100	11.9	0.12	04.3	41.2	11/4	3.61	54.3	2.16	9.74	3120
11/18/95	951164	7.8	<.1	39.4	48.1	1080	4.97	51.2	2.12	9.42	3709
11/18 - 19/95	951165	18.8	<.1	44.1	38.8	1236	5.34	73.6	1 76	8.52	4070
11/19/95	951166	19.3	<.1	42.7	51.1	1307	4.38	65.2	2.04	9.96	4577
11/19/95	951167	14.6	0.20	29.1	39.7	1036	3.40	63.0	1.55	10.60	4517
									1.00	10,00	
AVERAGE		15.3	0.15	40.2	46.1	1121	4.42	52.7	1.90	9.88	1277
STANDARD DEV	IATION	3.6	0.03	6.9	6.2	116	0.84	10.8	0.10	0.62	1202
COEFFICIENT OF	- VARIATION	23.7%	20.5%	17.3%	13.4%	10.4%	19.1%	20.4%	10.1%	6.3%	32.6%

.

-

Analyses performed by OCHD.

,

Ì

SAMPLE											
COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V	Zn Zipc
03/08 - 19/1996	960129	22.0	0.150	33.9	32.7	897	4.83	24.7	2 25	8 21	2024
03/08 - 19/1996	960130	13.6	0.160	41.3	33.3	894	7 82	27.7	2 73	9.04	2001
<u>03/08 - 19/1996</u>	960131	10.9	0.220	34.9	30.0	1127	6.70	377	1.07	0.04	2000
03/08 - 19/1996	960132	10.0	<.100	26.6	25.2	543	4 73	16.2	1.57	9.07	4924
<u>03/08 - 19/1996</u>	960133	11.8	0.320	20.1	52.0	478	5 13	35.5	1.70	0.03	1104
03/08 - 19/1996	960134	5.6	<.100	29.8	27.0	1022	5.22	25.6	1.70	9.70	0405
03/08 - 19/1996	960135	10.5	<.100	31.0	31.6	Q10	5.04	57.4	1.97	7.02	2135
03/08 - 19/1996	960136	13.3	<.100	22.4	201	622	5 20	22.5	2.01	7.54	2010
03/08 - 19/1996	960137	14.0	0.210	21.0	28.2	616	4.44	32.3	1.94	0.81	1448
03/08 - 19/1996	960138	19.6	<.100	24.0	24.5	1062	4,44	22.9	2.33	15.6	1230
					27.0	1002	4.09		2.45	8.09	1/24
AVERAGE		13.1	0.21	28.5	31.1	817	5.38	29.8	2.17	9.04	1773
STANDARD DEV	IATION	4.5	0.11	6.6	7.5	221	1.00	11.3	0.32	2 40	368
COEFFICIENT OF	F VARIATION	34.3%	53.9%	23.0%	24.2%	27.0%	18.6%	37.9%	14.6%	26.6%	20.8%

Analyses performed by OCHD.

09/16/1996	960667	33.1	< 100	46.3	50.9	2020	240	50.0			<u> </u>
09/16/1996	960668	25.0	< 100	40.7	10.0	2020	3.10	59.0	2.45	13.1	4802
00/17/1000	000000	20.8	<u> </u>	49.7	43.1	1604	13.8	39.2	2.18	14.5	4507
09/17/1990	960669		<.100	39.0	46.3	1590	8.38	29.5	2.64	16.3	3883
09/17/1996	960670	32.3	<.100	43.1	45.6	1582	4.10	40.9	2.63	17.0	2200
09/18/1996	960671	30.5	<.100	37.7	47.3	940	4 98	50.1	2.00	12.4	2290
09/18/1996	960672	25.4	<.100	45.1	341 9	800	5 10	272.7	2.31	13.1	4552
09/19/1996	960673	30.4	< 100	37.1	45.2	1075	0.10	105.5	2.27	12.9	4481
09/19/1996	960674	25.5	100	00.0	40.0	12/5	3,80	125.5	2.84	15.9	3803
09/20/1996	060875	01.0	<u> </u>	29.2	55.0	1811	8.13	47.3	2.53	15.7	8196
00/00/4000	900075	31.0	<.100	35.6	62.8	1246	6.83	53.7	3.05	17.7	6757
09/20/1996	960676		<u><.10</u> 0	49.2	66.9	731	4.41	55.4	1 00	15.7	4700
09/21/1996	960677	25.7	<.100	29,2	44.4	751	6.38	60.9	1.30	10.7	4732
09/21/1996	960678	30.5	<.100	38.2	50.8	1110	5.00	1 09.0	1.35	10.6	2904
09/22/1996	960679	37.2	< 100	20.0	00.0	1110	0.90	40.9	2.02	11.8	3278
09/22/1996	060690	01.2	~.100	30,2	87.0	1320	5.50	54.2	2.43	22.3	11168
00/12/1000	300000	30.8	<u><.100</u>	33.0	57.9	697	4,33	36.7	2.00	11.9	3666
AVERAGE		20.0	ALCA	000							
STANDARD DEV		29.9	IN/A	39.3	74.6	1256	6,07	77.5	2.33	15.0	4930
COEFFICIENT OF		4.3	<u>N/A</u>	6.4	75.0	409	2.62	85.1	0.41	3.0	2256
	TOBALION	14.4%	N/A	16.2%	100.5%	32.5%	43.1%	109.8%	17.8%	19.8%	15 9%
• •										10.070	40.070

.

Analyses performed by OCHD.

SAMPLE								T	1 ¹	1	
COLLECTION	LAB	As	Be	Cd	Cr	Ph	На	NI	80		7.
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercurv	Nicket	Selenium	Varadium	Zn Zinc
03/10/97	970134	22.9	0.110	49.6	35.7	660	8.24	30.7	1.85	17.7	4322
03/10/97	970135	17.5	<.100	29.0	30.2	622	5.66	30.3	1.60	14.8	4220
03/11/97	970136	14.2	0.600	24.0	41.1	828	6.55	38.5	1 18	14.0	4308
03/11/97	970137	12.9	0.170	30.3	36.3	717	6.28	35.4	1.28	11 9	2450
03/12/97	970138	15.0	0.160	33.9	41.4	841	9.45	30.3	1.50	12.4	3658
03/12/97	970139	12,2	<.100	48.2	74.4	1009	5.15	60.9	1.23	96.4	1043
03/13/97	970140	16.3	<.100	29.0	44.2	502	5.81	37.1	1.60	13.3	3563
03/13/97	970141	<u>1</u> 4.1	<.100	28.5	42.4	682	7.34	31.1	1 04	10.0	2006
03/14/97	970142	14.2	0.110	29.8	46.9	668	4.16	36.3	1.55	12.2	2300
03/14/97	970143	12.5	<.100	28.1	59.8	530	8 19	58.4	0.88	16.4	2640
03/15/97	970144	17.7	<.100	32.9	60.7	684	7.73	60.7	1.37	15.0	3832
03/15/97	970145	16.5	0.140	26.0	56.0	629	5.4	56.0	0.75	16.0	7796
03/16/97	970146	14.9	<.100	20.4	41.3	495	7.14	49.5	1 70	9.8	<u> </u>
03/16/97	970147	11.5	<.100	35.8	64.5	1047	6.54	64.5	0.67	14.6	5576
								0 110	0.07	14.0	0070
STANDARD DEV		15.2	0.22	31.8	48.2	708	6.69	44.3	1.30	19.7	4063
COEFFICIENT O	F VARIATION	2.8	0.16	7.9	12.3	164	1.37	12.8	0.35	21.4	1398
		10.170	12.4%	24.9%	25.5%	23.1%	20.5%	28.9%	26.9%	108.8%	34.4%
Analyses performed by	Y OCHD.										
09/15/97	970698	42.2	< 100	24.4	<i></i>						
09/15/97	970600	43.3	<.100	34.1	54.9	3932	5,84	42.2	1.20	21.2	4982
09/16/97	970099	21.7	<.100	33.4	45.5	923	4.40	26.7	0.64	12.5	3820
00/16/07	970700	32.5	0.290	30.2	53.2	1012	3.61	32.5	0.92	20.7	4634
09/10/97	970701	22.9	<.100	26.2	37.3	1023	5.18	19.4	0.67	16.3	3834
09/17/97	970702	40.5	<.100	31.8	44.1	968	5.72	28.1	0.86	17.8	4583
00/19/07	970703	22.1		33.4	40.4	1051	4.91	36.8	0.61	10.5	4584
00/40/07	970704	22.2	<.100	27.1	69.5	1014	5.33	32.9	0.86	17.5	3617
09/10/97	970705	24.5	<.100	21.8	34.7	1084	12.5	14.7	0.82	11.8	3296
09/19/97	970706	25.3	<.100	32.6	46.7	1911	7.91	33.6	0.72	14.8	4041
09/19/97	970707	22.2	0.140	30.4	60.2	1481	6.75	28.7	0.60	13.0	A152
AVERAGE		277 1	0.00 T							10.0	7132
STANDARD DEVI	ATION	7.7	0.00	30.1	48.7	1440	6.21	29.6	0.79	15.6	4154
COEFFICIENT OF	VARIATION	27.8%	42.9%	12.4%	21.1%	880	2.38	7.6	0.18	3.5	504
					<u> </u>	01.170	38.2%	25.8%	22.2%	22.5%	12.1%

Analyses performed by OCHD.

1

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercurv	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
02/23/98	980126	14.8	<0.50	26.6	41.3	700	11.6	95.0	<0.25	25.0	3100
02/23/98	980127	16.6	<0.50	30.1	36.9	1760	6.50	75.8	<0.25	15.6	01/0
02/24/98	980128	12.6	<0.50	24.2	28.4	740	7 70	23.8	(0.25	12.4	2020
02/24/98	980129	9.60	< 0.50	23.0	35.8	610	9.30	23.8	(0.25	16.0	2020
02/25/98	980130	7.60	<0.50	23.8	44.2	510	5.30	46.7	<0.25	17.0	2010
02/25/98	980131	6.70	<0.50	21.6	32.5	540	0.70	40.7	<0.25	12.4	2520
02/26/98	980132	12.4	<0.50	24.8	68.2	730	10.0	40.2	<0.25	13.4	3050
02/26/98	980133	6.60	<0.50	10.7	44.2	<u> </u>	TU.U	42.1	<0.25 10.05	22.4	3350
02/27/98	980134	7.60	<0.50	27.4	20.4	460	0.44	47.0	<0.25	12.1	2210
02/27/98	980135	7.40	<0.50	21.4	41.0	400	2.93	46.4	<0.25	13.8	2220
	000100	7.40	-0.00	21,4	41.2	7200	10.5	35.8	<0.25	12.6	2310
02/27/98**	980135-RPT					761					
AVERAGE		10.2	N/A	24.3	41.2	1383	7.90	46.3	N/A	16.2	3333
COEFEICIENT O		3.5	N/A	3.0	10.2	1971	2.64	21.9	N/A	4.1	1971
OUEFFICIENT U	F VARIATION	34%	N/A	12%	25%	143%	33%	47%	N/A	25%	59%

Analyses performed by CES.

SAMPLE		1					1		T		
COLLECTION	LAB	As	Be	Cd	Cr	Pb	На	Ni	Se	v	75
DATE	##	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zino
10/26/98	980808	29.8	0.80	26.6	47.7	852	6.95	49.9		22.0	2550
10/26/98	980809	23.6	0.52	26.4	47.1	776	6.40	41.6	<1.00	24.0	3008
10/27/98	980810	36.0	0.74	28.0	138.6	1417	6.00	100.4	1.00	31.0	3926
10/27/98	980811	25.3	0.66	31.9	49.3	14800	6.99	40.0	-2.47	36.2	3565
10/28/98	980812	32.9	0.65	30.6	42.7	1525	0.00	40.2	<0.98	26.3	4024
10/28/98	980813	22.8	0.44	20.1	52.4	11020	7.40	32.7	<0.98	30.7	3311
10/29/98	980814	37.8	0.64	33.0	62.5	000	7.10	61.3	< 0.96	30.1	3604
10/29/98	980815	31.1	0.60	20.4	02.5	990	9.20	54.0	<1.00	32.0	1429
10/30/98	980816	20.9	0.09	30.4	44.9	2633	14.0	17.0	<0.98	26.3	3788
10/30/98	000017	29.0	0.52	22.8	37.1	740	7.32	41.1	<2.51	41.6	3110
10/00/98	960817	30.6	0.51	22.1	34.6	1100	6.14	58.0	<1.00	27.4	3892
AVERAGE		30.0	0.00	00.4							
STANDARD DEV	ATION	30.0	0.62	28.1	55.7	2602	7.90	59.5	N/A	31.5	3421
COEFFICIENT OF	VARIATION	4./	0.11	3.5	28.6	4100	2.20	48.2	N/A	4.5	716
	MARATION	10%	18%	12%	51%	158%	28%	81%	N/A	14%	21%

SAMPLE							1	· · · · · · · · · · · · · · · · · · ·	1	r	
COLLECTION	LAB	As	Be	Cd	Cr	РЬ	На	NG	50		7-
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	v Vanadium	Zn Zino
04-19-99	990215	30.4	<0.50	29.4	50.1	760	4 56	73.0	1 28	20.0	2864
04-19-99	990216	22.7	<0.50	32.8	114	1860	3.83	33.0	1.20	26.5	2004
04-20-99	990217	26.0	<0.50	29.3	47.0	728	2.00	60.4	1.10	30.0	9523
04-20-99	990218	20.8	<0.49	34.2	49.0	652	5.03	24.0	1.20	32.3	2730
04-21-99	990219	28.6	<0.50	36.2	51 4	995	5.00	4500	1.30	20.0	2920
04-21-99	990220	29.6	<0.49	44.2	227	828	5.24	1009	1.50	21.1	3863
04-22-99	990221	24.1	<0.49	35.3	AA 5	1020	1 12	44.0	1.75	32,3	3808
04-22-99	990222	26.8	<0.49	38.0	59.0	11029	<u>4.13</u>	39.0	0.89	31.5	2916
04-23-99	990223	30.2	<0.50	40.2	51.6	849	0.04	30.7	1.15	23.6	3362
04-23-99	990224	23.9	<0.40	33.6	52.1	040	4.00	29.3	1.08	30.0	3360
		20.0		33.0	55.1	939	5.54	43.0	1.31	23.4	3303
AVERAGE		26.3	N/A	35.4	74.6	965	4.83	100	1.24	20.0	0005
STANDARD DEV	IATION	3.2	N/A	4.4	54.4	327	0.69	440	0.24	20.0	3805
COEFFICIENT O	F VARIATION	12.2%	N/A	12.6%	72.9%	33.8%	14.3%	232.1%	18.2%	16.7%	1922
Analyses performed by	y ELS.										
44.00.00											
11-08-99	990747	29.6	<2.53	29.9	60.1	789	5.73	241	<2.53	37.0	3176
11-08-99	990748	30.9	<2.56	30.2	48.6	802	5.47	268	3.48	30.6	3302
11-09-99	990749	33.1	<2.43	31.5	53.4	1026	4.70	64.7	<2.43	48.6	3120
11-09-99	990750	24.0	<2.45	32.1	60,1	698	5.44	48.9	<2.45	34.6	2022
11-10-99	990751	25.2	<2.48	30,5	64.2	848	4 51	60.0	<2.40	40.4	2823
11-10-99	990752	25.8	<2.48	36.2	51.8	1425	5.30	43.7	~2.40	40.4	3308
11-11-99	990753	28.2	<2.42	31.2	45.7	928	5.12	20.1	~2.40	27.0	3383
11-11-99	990754	24.4	<2.41	33.3	49.3	876	7 /5		<2.42	48.0	3042
11-12-99	990755	23.5	<2.45	27.5	50.0	700	<u> </u>	43.1	<2.41		3416
11-12-99	990756	25.4	<2.43	38.8	42.4		0.22	39.5	<2.45	28.9	2743
			-2.40	00.0	42.4	920	6.85	171	<2.43	24.8	3815
AVERAGE		27.0	N/A	32.1	52.6	001	5.00 T	(00 -			
STANDARD DEVI	ATION	3.1	N/A	3.1	66	200	0.00	<u>102</u>	3.48	35.0	3225
JUEFFICIENT OF	VARIATION	11.5%	N/A	9.7%	12.5%	22.2%	15 /0/	00 70/	0.00	8.0	281
				la		- 4a - 6 / V	10,470	03.1%	0.0%	22.8%	8.7%

SAMPLE							[1		
COLLECTION	LAB	As	Be	Cd	Cr	Ph	На	Ni	Se		70
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercurv	Nickel	Selenium	Vanadium	Zinc
05/08/00	2000-0243	38.8	<0.49	35.5	58.8	1053.0	7.0	101.4	12	32.9	3120.0
05/08/00	2000-0244	28.6	<0.50	34.9	63.8	708.1	54	58.2	12	25.1	3385.2
05/09/00	2000-0245	73.4	<0.50	38.6	65.9	1112.0	86	247.2	26	24.0	5576 0
05/09/00	2000-0246	25.2	<0.50	31.4	92.8	761.3	62	117.8	<u> </u>	27.0	3691.6
05/10/00	2000-0247	30.7	<0.25	33.5	55.9	693.8	61	30.8	0.0	22.4	5001.0
05/10/00	2000-0248	26.3	<0.50	34:5	61.4	792.0	66	47.2	11	20.4	2044.0
05/11/00	2000-0249	53.8	<0.50	39.5	106.1	721 7	10.4	200 0	1.1	21.0	2079.0
05/11/00	2000-0250	33.9	<0.50	32.4	51.6	850.2	57	200,0	<0.50	30.0	2054 6
05/12/00	2000-0251	25.5	<0.49	28.7	55.5	673.9	7.6	282.0	1.3	26.4	36/0.8
05/12/00	2000-0252	35.1	<0.50	38.7	67.4	757.5	6.8	42.3	1.0	26.0	2157 5
								12.0		20.0	0107.0
AVERAGE		37.1	NA	34.8	67.9	812	7.02	126	1.23	26.7	3830
STANDARD DEV	IATION	14.6	NA	3.3	16.7	144	1.42	101	0.62	36	984
COEFFICIENT O	F VARIATION	39.2%	NA	9.5%	24.6%	17.7%	20.2%	80.1%	50.5%	13.4%	25.6%
										المريبية المسمون المسبو	
Analyses performed b	y ELS.										
			· · · · · · · · · · · · · · · · · · ·								
12/10/00	2000-0785	27.8	<0.51	28.1	42.2	1014.0	9.4	32.8	1.1	44.5	3127.8
12/11/00	2000-0786	15.8	<0.49	18.7	39.1	669.1	5.4	29.3	1.0	22.5	1903.5
12/11/00	2000-0787	23.1	<0.49	26.3	49.0	732.6	3.8	44.4	1.3	36.6	2656.6
12/12/00	2000-0788	21.1	<0.50	31.2	46.1	628,5	4.9	38.0	12	26.4	2056.5
12/12/00	2000-0789	14.3	<0.50	27.2	69.5	810.0	4.4	314.3	14	20.4	2620.0
12/13/00	2000-0790	14.9	<0.50	26.6	50.3	858.4	5.6	47.8	1.7	20.2	2624.4
12/13/00	2000-0791	14.5	<0.50	26.7	51.5	694 1	6.0	28.2	1.0	17.0	2034.4
12/14/00	2000-0792	21.1	<0.50	24.0	53.0	858.4	5.5	47.5	4.0		2190.4
12/14/00	2000-0793	19.1	<0.51	27.5	41.4	076.9	5.0	-41.J	1.3	20.1	2205,2
12/15/00	2000-0794	21.0	<0.51	21.0	36.1	7529.0	0.0	54.4	1.6	22.4	3414.4
			.0.01		30.1	1020.0	4.3	26.1	1.3	20.7	2160.0
AVERAGE		19.3	NA	25.7	17.9	1477	E 44				
STANDARD DEVI	ATION	4.2	NA	34	9.0	2021	<u> </u>	00.3	1.26	26.6	2688
COEFFICIENT OF	VARIATION	21.7%	NA	13.2%	18.8%	136.8%	27.0%	83.2	0.16	7.8	553
					10.070	100.070	21.070	120.5%	12.6%	29.4%	20.6%

SAMPLE COLLECTION	LAB	Δο	Bo	Cd	<u></u>			N If			
DATE	#	Arsenic	Bervllium	Cadmium	Chromium	PD Lead	Mercury	NI Nickel	Selenium	V Vanadium	Zn
03/19/01	01-0167	8.2	0.24	20.6	40.7	627.8	23	36.6			
03/19/01	01-0168	6.0	0.35	14.5	48.7	777.6	2.5	21.4	0.0	10.0	1941.0
03/20/01	01-0169	92	0.21	20.2	36.6	600.9	2.1	21.1	0.7	10.0	1764.0
03/20/01	01-0170	11.2	0.22	17.3	38.6	407.4	3.0	23.5	1.2	15.2	16/2.5
03/21/01	01-0171	90	<0.22	17.7	25.0	950 7	2.0	34.0	1.1	15.1	1686.3
03/21/01	01-0172	77	0.10	10.6	20.9		3.2	24.8	1.0	11.8	1601.6
03/22/01	01-0173	10.0	0.20	20.0	00.0 64.5	419.0	4.1	26.8	1.2	19.7	4737.7
03/22/01	01-0174	67	0.24	29.0	01.5	522.2	3.3	67.2	0.8	22.0	1981.0
03/23/01	01-0175	8.6	0.30	12.7	30.5	413,9	3.8	51.5	1.0	21.8	1701.0
03/23/01	01-0176	9.0	0.00	- 13.7	20.9	674.3	2.9	36.0	2.6	21.4	2010.0
00/20/01	01-0170	0.4	0.20	24.3	28.9	549.8	3.3	44.7	1.0	14.6	1990.6
AVERAGE		8.6	0.201	19.5	38.0	537.4	21	26.7	1 4	477	0400 7
STANDARD DEV	IATION	1.5	0.1	4.3	10.0	128.7	0.7	13.7	0.5	34	2108.7
COEFFICIENT O	F VARIATION	18.0%	<u>19.1%</u>	22.0%	26.4%	24.0%	23.2%	37.4%	47.2%	19.0%	42.1%
Analyses performed by	y ELS.										
12/10/01	01-0777	35.3	<0.5005	44.9	33.0	2895.2	5.9	40.0	2.9	29.0	3757.6
12/10/01	01-0778	18.5	<0.4928	25.9	30.5	517.4	6.0	21.3	1.5	24.8	2610.3
12/11/01	01-0779	20.7	<0.4968	42.5	45.6	864.0	6.7	35.6	20	22.3	3340.9
12/11/01	01-0780	21.8	<1.28	33.9	48.0	755.2	49	38.6	2.0	22.0	4022.0
12/12/01	01-0781	19.8	<0.5106	27.6	39.9	591.3	41	48.0	2.0	22.0	4032.0
12/12/01	01-0782	24.9	<0.5022	37.9	33.9	781 7	62	35.2	2.1	30.9	2812.0
12/13/01	01-0783	25.0	<0.504	40.5	30.7	652.0	5.2	22.6	<u> </u>	23.3	3677.4
12/13/01	01-0784	24.1	<0 5175	35.0	33.7	1205.0	0.0	32,0	2.2	26.8	3112.0
12/14/01	01-0785	33.8	<0.5041	73.8	25 /	1170.6		40.0	2.2		2925.0
12/14/01	01-0786	13.7	<0 4964	24.1	42.4	1000.4	1.9		2.9	. 28.7	3968.9
			-0.4004		43.4	1080.4	1.3	32.3	1.6	39.3	2233.8
AVERAGE		23.8	NA	38.6 I	37.4	1062.1	4 1	25 4			
STANDARD DEVI	ATION	6.3	NA	13.5	6.0	658.2	19	70	2.4	26.9	3247.0
JUEFFICIENT OF	VARIATION	26.5%	NA	35.0%	16.1%	62.0%	42.2%	19.9%	23.5%	5.2	577.5
								.0.070	20.070	19.2%	17.8%

SAMPLE		1						F		1	
COLLECTION	LAB	As	Be	Cd	Cr	Ph	На		50		75
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercurv	Nickel	Selenium	Vanadium	Zinc
05/06/02	02-0241	23.9	<0.4836	29.3	48.7	710.6	4.5	71.3	14	30.3	2581.8
05/06/02	02-0242	19.7	<0.4928	22.3	44.3	563.6	22	61.2	12	2/ 1	2705 1
05/07/02	02-0243	38.8	<0.5002	42.6	45.6	768.3	45	38.8	16	24.1	2190.1
05/07/02	02-0244	22.8	< 0.5124	41.7	95.8	646.0	6.8	55.7	1.0	24.0	3320.0
05/08/02	02-0245	22.2	<0.5025	43.0	59.3	<u>900 0</u>	5.8	52.7	1.2	27.0	3306.4
05/08/02	02-0246	18.6	< 0.5135	24.1	52.8	659.7	10	60.8	1.5	20.0	3023.0
05/09/02	02-0247	29.2	<0 4977	26.9	55.0	770.3	2.4	20.0	0.0	24.2	2449.0
05/09/02	02-0248	18.6	<0.4808	18.7	26.7	<u> 502.2</u>	0.4	29.0	0.9	23.9	2180.4
05/10/02	02-0249	34.1	<0.4940	32.2	41.0	603.1	<u> </u>	20.1	0.9	18.5	2061.9
05/10/02	02-0250	43.6	<0.5092	45.5	55.6	724 1	5.7	20,0	1.0	23.8	2781.6
			1 .0.0002	40.0	00.0	731.1	0.2	29.9	1.9	24.5	3792.4
AVERAGE		27.2	NA	32.6	53.6	703.6	4.2	45.5	13	2/ 0	2026.2
STANDARD DEV	/IATION	8.5	NA	9.3	15.5	92.3	1.6	15.8	04	31	2930.2
COEFFICIENT O	F VARIATION	31.1%	NA	28.6%	29.0%	13.1%	38.5%	34.7%	30.7%	12.3%	21.0%
				-							
Analyses performed b	y ELS.										
12/02/02	02-0767	33.5	<1.005	43.2	45.7	982.5	4.5	42.6	1.8	34.0	4035.0
12/02/02	02-0768	16.6	<1.0184	24.6	35.6	716.7	4.1	66.2	<1.0184	29.0	2295.2
12/03/02	02-0769	23.2	<u><1.01</u> 64	24.3	30.7	890.4	9.1	26.5	11	29.5	2041.2
12/03/02	02-0770	16.8	<0.9860	26.6	32.6	590.2	6.0	22.9	<0.986	55.8	2629 4
12/04/02	02-0771	26.0	<0.4964	29.5	42.1	1649.8	47	36.1	1.5	22.7	2030.4
12/04/02	02-0772	23.2	<0.4968	31.3	33.5	1255.8	13.7	38.4	1.5	22.1	2400.1
12/05/02	02-0773	23.7	<0.5112	43.8	35.8	1605.6		30.0	1.5	21.3	2187.3
12/05/02	02-0774	22.3	<0.5256	31.8	38.0	1357.9	7.0		2.0	23.5	3038.4
12/06/02	02-0775	23.5	<0.5166	28.7	41.2	1000.4	7.0	42.1	1,5	23.7	2438.2
12/06/02	02-0776	15.7	<0.0100	15.7	25 /	1082.4		32.2	1.1	25.7	2214.0
				10.7	35.4	201.2	2.6	28.3	1.0	23.0	1154.4
AVERAGE		22.4	NAT	29.9	37.1	1038.2	60 1				
STANDARD DEVI	ATION	5.0	NA	8.1	4.5	423.8	3.0		1.1	28.8	2450.2
COEFFICIENT OF	VARIATION	22.3%	NA	26.9%	12.0%	40.8%	45.0%	20 70/	0.6	9.7	699.2
						101070	-0.070	00.170	30.0% I	338%	28 5% I

56.0%

33.8%

28.5%

COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
06/02/03	15503164	15.1	<0.504	15.1	100.8	5460.0	1.3	226.8	<0.504	23.5	1428.0
06/02/03	15503165	22.8	<0.501	22.8	44.6	637.0	1.3	91.0	<0.501	26.4	13650.0
06/03/03	15503166	11.4	<0.502	14.1	20.2	1056.0	1.1	11.4	<0.502	10.6	1320.0
06/04/03	16103027	22.3	<0.501	25.4	30.8	700.7	25	100 1	<0.501	23.1	2026.0
06/04/03	16103028	16.2	<0.502	15.3	28.9	272.0	7.0	22.1	<0.502	11.0	1445.0
06/05/03	16103029	37.2	<0.502	33.4	47.1	661.2	39	35.7	<0.502	36.5	3976.0
06/05/03	16103030	28.1	<0.503	24.8	48.2	522.6	5.2	20.1	<0.502	20.9	2245.0
06/06/03	16103031	30,4	<0.504	30.4	43.2	600.0	3.4	40.0	<0.503	20.0	2345.0
06/06/03	16103032	34.2	<0.502	35.0	50.9	699.2	43	64.6	<0.504	21.2	5472.0
06/07/03	16103026	58.2	<0.500	31.2	53.3	680.6	3.7	76.3	<0.502	32.0	4674.0
ALCE LOS				al man	Sales Area	13/26-26					101 1.0
AVERAGE		27.6	NA	24.7	46.8	1128.9	3.4	68.8	NA	24.0	3993.6
STANDARD DEV	IATION	13.0	NA	7.4	20.7	1455.2	1.8	60.2	NA	81	3484 5
COEFFICIENT O	FVARIATION	47.0%	NA	30.1%	44.2%	128.9%	52.9%	87.5%	NA	34.0%	87.3%

Analyses performed by Upstate Laboratories Inc.

06/14/04	E1540	32.1	<1.0152	26.2	44.8	829.1	30	39.8	0.8	27 1	2552.2
06/14/04	E1541	25.9	<0.9812	22.3	42.8	651.2	12	25.0	0.0	20.5	2506.0
06/15/04	E1542	38.2	<1.0188	28.0	66.2	1273.5	2.5	55.2	11	43.3	2000.0
06/15/04	E1543	43.4	<10.2	38.3	85.0	935.0	6.5	102.0	<5.015	<50.2	3400.0
06/16/04	E2029	33.0	<1.0164	38.1	52.5	931.7	5.0	52.5	1.3	30.5	3642.1
06/16/05	E2030	31.2	<1.014	37.4	45.2	1014.0	3.0	319.8	2.0	22.6	3978.0
06/17/05	E2031	26.0	<1.0068	32.7	56.2	662.8	3.6	36.9	1.3	25.2	3523.8
06/23/04	E2626	27.5	<0.9984	31.6	56.6	807.0	3.8	35.8	1.8	25.0	3244.8
06/25/04	E2627	45.8	<0.975	73.5	63.8	1425.0	5.6	82.5	1.7	25.5	5850.0
06/27/04	E2628	44.7	<0.9924	65.3	62.0	992.4	3.2	48.0	1.7	34.7	3721.5
AVEDAOE		T								448	
AVERAGE		34.8	NA	39.4	57.5	952.2	3.8	79.7	1.2	25.4	3672.6
STANDARD DEVIA	TION	7.3	NA	15.9	12.0	233.1	1.5	83.0	0.6	10.6	806.8
COEFFICIENT OF V	ARIATION	21.1%	NA	40.5%	20.9%	24.5%	39.5%	104.1%	46.4%	41.5%	22.0%

Analyses performed by O' Brien	& Gere Laboratories, Inc
Analyses performed by O. Brien	& Gere Laboratories, Inc

Non-the Association of the Assoc											
12/23/04	F1433	15.0	<1.027	28.4	34.8	576.7	4.3	29.2	07	221	4020.0
12/23/04	F1434	17.3	< 0.9802	35.4	49.0	1885.0	54	27.0	11	24.1	4029.0
12/27/04	F1513	23.7	<0.9647	38.6	43.9	1052.4	14.0	38.6	0.0	21.1	3408.4
12/27/04	F1514	20.2	<0.9672	28.2	47.6	660.9	73	104.0	0.9	30.8	4034.2
12/28/04	F1515	14.9	<0.9698	29.8	74.6	1110.0	1.5	104.0	1.5	24.2	4836.0
12/28/04	=1516	17.9	<1 0024	25.9	14.0	045.0	4.0	33.0	0.7	32.8	3058.6
12/29/04	1517	10.0	<0.0000	00.0	40.0	015.8	4.2	70.2	1.0	17.2	3150.4
12/20/04	1011	13.0	-0.9000	33.8	39.6	824.0	3.5	28.8	1.0	33.8	3213.6
12/20/04	1010	21.5	<1.0374	42.3	51.9	1436.4	4.5	46.3	1.3	28.7	3670.8
12/30/04	-1519	14.6	<0.9756	35.0	33.3	626.0	4.9	27.6	0.8	18.7	2926.8
12/30/04	1520	18.6	<0.9684	34.7	51.6	637.5	3.4	45.2	1.4	22.6	3470 1
AVEDAOE				1						44.0	3470.1
AVERAGE		18.3	NA	34.2	47.4	943.4	5.6	45.2	1 44	05.0	0505.0
STANDARD DEVIATION	N	2.8	NA	4.2	11.0	412.6	3.0	22.4	1.44	20.8	3585.8
COEFFICIENT OF VAR	IATION	15.5%	NA	12.3%	23.2%	43 7%	52 /0/	£1.00/	0.2	6.5	550.9
·					10.270	40.770	03.4%	51.8%	17.1%	25.0%	15.4%

Analyses performed by O' Brien & Gere Laboratories, Inc

.

SAMPLE									I		
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Ha	Ni	Se	v	7 n
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
05/16/05	0505100-001A	46,3	<0.9977	46.3	58.0	1542	3.6	39.0	1,4	47.2	5623
05/16/05	0505100-002A	45.0	<0.9648	39.4	59.5	1045	3.5	39.4	1.4	37.0	4904
05/17/05	0505100-003A	44.9	<0.9867	50.2	71.8	1704	3.9	82.5	1.5	29.6	5292
05/17/05	0505100-004A	61.5	<1.0104	63.2	69.9	2021	4.0	64.8	1.8	31.2	6399
05/18/05	0505131-001A	48.9	<0.9614	54.2	73.4	1311	4.1	81.3	1.6	34.1	5419
05/18/05	0505131-002A	37.9	<1.0104	52.2	60.6	1768	4.0	41.3	1.7	26.9	4968
05/19/05	0505131-003A	36.7	<0,9996	48.3	54.1	1166	4.1	40.8	1.2	29.2	4498
05/19/05	0505131-004A	47.7	<0.9708	55.0	57.4	1294	4.8	44.5	1.4	 29.1	5663
05/20/05	0505131-005A	40.1	<0.9612	48.1	48.1	1282	0.6	48.9	0.9	37.6	4886
05/20/05	0505131-006A	42.6	<0.9636	61.8	112.4	1445	4.9	216.8	1,5	24.1	6103
AVERAGE		45.1	NA	51.9	66.5	1457.9	3.7	69.9	1.4	32.6	5376
STANDARD DEV	IATION	6.7	NA	6.8	17.1	285.6	1.1	51.5	0.2	6.3	559
COEFFICIENT O	F VARIATION	14.8%	NA	13.1%	25.7%	19.6%	30.2%	73.7%	16.6%	19.4%	10.4%

Analyses performed by Life Science Laboratories, Inc.

SAMPLE							· · · · · · · · · · · · · · · · · · ·				
COLLECTION DATE	LAB #	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
10/10/0	"	Algenic	DerMinnin	Caumium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
12/12/05	<u>0512118-001A</u>	<u>24</u> .1	<0.9972	40.7	50.7	997	4.1	58.2	1.1	<99 72	6814
12/12/05	0512118-002A	18.3	<0.9932	28.3	45.8	1452	2.4	37.4	12	10.0	2003
12/13/05	0512118-003A	16.9	<1.0152	41.5	45.7	1184	3.3	195	0.7	31.3	2000
12/13/05	0512118-004A	20.9	<1.002	30.9	68.5	1086	<0.100	61.0	11	<50.1	2240
12/14/05	0603017-001A	13.6	<0.9789	27.1	39.9	1280	29	35.4	0.5	20.0	0040
12/14/05	0512118-006A	20.0	< 0.9984	30.8	56.6	599	27	42.4	0.0	30.9	3313
12/15/05	0512142-001A	13.5	<1.0309	23.8	38.9	402	17	70.9	0.7	<49.92	3245
12/15/05	0512142-002A	21.8	< 0.9684	40.4	47.6	1040	<u> </u>	20.0	0.0	<49.96	2775
12/16/05	0512142-003A	18.6	<1.0024	29.4	48.0	850	24	29.9	1.1	27.4	3793
12/16/05	0512142-004A	19.7	< 0.9854	41 7	40.0	834	<u> </u>	0.0	1.4	<50.12	
					40.0	0.04	4.2	30.3	1./	25.8	4321
AVERAGE		19.7		00.4			_				
STANDARD DEV/	ΔΤΙΩΝΙ	- 10.7			48.3	983.2	3.2	60.4	1.0	27.0	3742
COFFEICIENT OF		3.2	<u>NA</u>	6.5	8.4	281.1	0.8	47.2	0.3	42	1127
	VARIATION	17.1%	NA	19.5%	17.4%	28.6%	25.0%	78.1%	32.3%	15.6%	30.1%

SAMPLE			1		F		1		1		·
COLLECTION	LAB	As	Be	Cđ	Cr	Pb	Ηα	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
04/10/06	0604077-001A	40.8	<0.978	67.6	46.5	1467	2.0	35.9	1.47	27.7	5216
04/11/06	0604077-002A	47.5	<1.02	63.3	59.3	1345	6.0	36.4	1.11	24.5	4825
04/12/06	0604090-001A	27.9	<0.986	32.1	78.9	904	1.0	18.1	1.1	38.6	4274
04/13/06	0604090-002A	39.0	<0.995	50.6	42.3	995	3.3	69.6	1.58	45.6	4477
04/14/06	0604090-003A	40.5	<1.03	68.0	52.5	1292	8.5	38.7	1.21	25.8	4994
NA	NA					i					
NA	NA										
NA	NA										
NA	NA										<u> </u>
NA	NA								<u> </u>		
			•				L				

AVERAGE	39.1	NA	56.3	55,9	1200.4	4.2	39.7	1.3	32.5	4757
STANDARD DEVIATION	6.3	NA	13.7	12.9	214.6	2.7	16.7	0.2	8.2	341
COEFFICIENT OF VARIATION	16.1%	NA	24.3%	23.0%	17.9%	65.8%	42.0%	15.6%	25.4%	7.2%

Analyses performed by Life Science Laboratories, Inc

.

SAMPLE]	1	1		1		1		
COLLECTION DATE	LAB #	As Arsenic	Be	Cd	Cr	Pb	Hg	Ni	Se	V.	Zn
00/07/06	0000400 0044		Derymun		CIRCINIUN	Leau		NICKEI	Selenium	Vanadium	Zinc
00/07/00	0508136-001A	42.7	<1.01	39.4	38.5	838	2.8	117.3	1.01	28.5	3687
08/08/06	0608136-002A	41.3	<0.972	43.7	41.3	1133	4.0	35.6	1.21	27.5	4288
08/09/06	0608136-003A	22.0	<0.984	25.7	28.8	477	3.0	22.7	0.72	25.0	2274
08/10/06	0608136-004A	33.3	<1.00	40.0	47.5	1583	24	108.3	1.00	27.5	227
08/11/06	0608136-005A	28.2	<0.968	33.9	57.3	888	10	26.2	0.61	40.4	3332
08/14/06	0608136-006A	35.0	<1.03	35.0	54.9	705	24	67.6	0.01	48.4	3389
08/15/06	0608136-0074	28.0	-0.065	00.0	09.0	730	2.4	07.0	0.95	42.9	3101
09/16/00	0000100-007A	20.9	<0.905	20.3	68.4	509	0.3	<u>149.1</u>	0.59	78.9	2806
00/10/06	0608136-008A	23.3	<0.962	24.9	28.9	553	<0.096	44.9	0.54	30.5	3449
08/17/06	0608136-009A	27.9	< 0.960	35.8	48.0	960	<0.096	37.5	0.66	24.0	0000
08/18/06	0608136-010A	21.8	<0.970	26.7	46.1	2262	0.000	01.0	0.00	34.9	6635
					40.1 }	2202	Z.1	63.0	0.65	36.4	2747
			··-								
		30.4	<u>NA</u>	33.1	46.0	999.8	3.2	68.2	0.8	27.0	0570
STANDARD DEVI	ATION	7.1	NA	6.5	11.8	524.2	0.0	40.0	0.0		3570
COEFFICIENT OF		23 4%	NA	10.01		024.2	0.8	40.3	0.2	4.2	1149
		40.470	<u>na</u>	19.0%	25.6%	52.4%	25.0%	59.0%	27.5%	15.6%	32.2%

SAMPLE COLLECTION	LAR	As	Po		0.						
DATE	#	Arsenic	Beryllium	Cadmium	Cr Chromium	PD Lead	Hg Mercurv	Ni Nickel	Selenium	V Vanadiumi	Zn Zinc
04/23/07	0704181-001A	33.2	<0.996	42.3	51.5	1079	7.4	65.6	<0.996	27.4	3901
04/23/07	0704181-002A	30.5	<1.0152	54.1	43.1	1100	4.5	39.8	<1 0152	16.9	4315
04/24/07	0704181-003A	32.6	<1.0032	58.5	49.3	1338	6.0	37.6	<1 0032	21.7	11704
04/24/07	0704181-004A	40.8	<0.9646	89.0	54.9	1336	5.0	30.3	1 559	47.0	6022
04/25/07	0704181-005A	45.0	<1.015	94.3	54.4	1450	6.0	44.2	1.000	17.0	6040
04/25/07	0704181-006A	36,2	<1.0244	62.3	63.8	1340	3.6	62.2	<1.007	01.0	4700
04/26/07	0704186-001A	40.8	< 0.9997	100	47 7	1615	5.0	<u> </u>	1 207	477	4/28
04/26/07	0704186-002A	34.4	<0.9945	66.6	65.8	4201	0.9	400.1	1.307	11.1	6537
04/27/07	0704186-003A	34.1	<1.0088	59.8	201.8	1000	7.4	05.4	0,995	19.9	0508
04/27/07	0704186-004A	33.1	<0.9684	42.9	75 1	069	0.7	00.4	8800.12	34.9	4501
			-0.0004	76.0		906	<u>3./</u> _	145.3	<u>_<0.9684</u>	29.1	3874

AVERAGE	36.1	NA	67.0	70.7	1253	5.4	70.9	14	22.4	5732
STANDARD DEVIATION	4.4	NA	19.6	44.6	197	1.4	37.0	0.3	5.8	2192
COEFFICIENT OF VARIATION	12.1%	NA	29.2%	63.1%	15.7%	25.8%	52.3%	18.7%	25.7%	38.2%
										00.270

Analyses performed by Life Science Laboratories, Inc

.

SAMPLE]		
COLLECTION	LAB	As	Ве	Cd	Cr	Pb	Но	NI	Se	v	70
DATE	##	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zino
08/09/07	0708082-001A	38.9	<0.972	38.9	52.7	2187	3.5	56.7	1 /6	20.7	2040
08/10/07	0708082-002A	39.3	<1.0032	30.1	275.9	828	24	242	2 47	44.0	3240
08/14/07	0708121-001A	36.7	<1.002	45.9	43.4	919	43	Q1 Q	1.67	41.0	<u> </u>
08/14/07	0708121-002A	36.0	<0.96	45.6	55.2	1120	51	40.9	2.16	30.9	3925
08/15/07	0708121-003A	31.7	<0.9768	32.6	154.7	2035	24	40.0	4.70	30.8	4160
08/15/07	0708121-004A	50.7	<1.014	85.8	38.2	140	2.4	130.2	1.79	34.2	3337
08/16/07	0708121-005A	46.4	<5.031	54.2	44.1	750	<u> </u>	28.9	1.79	25.7	5694
08/16/07	0708121-006A	63.5	<1.0332	88.6	26.2	709	0.0	92,9	<5.031	<24.768	4102
08/17/07	0708121-007A	37.9	<1.0002	46.6	44.0	2009	8.9	26.6	1.99	22.9	6494
08/17/07	0708121-008A	49.4	<1.0207	<u>40.0</u> 52.7	41.0 25.4	1026	4.6	31.6	1.81	32.3	4655
			1.0000	02.1		934	4.9	23.3	1.47	19.3	4402
AVERAGE		43.0	NA	50.4							
STANDARD DEVI	ATION	90.0		02.1		1246	3.2	76,5	1.8	27.0	4335
COEFFICIENT OF		20.00		19.0	74.2	708	0.8	65.0	0.2	4.2	1002
	- Control - Cont	20.0%	NA	36.5%	95.4%	56.8%	25.0%	84.9%	13.6%	15.6%	23,1%

SAMPLE									F		
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	l v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
04/25/08	0805009-001A	56.4	<1.0036	131.2	46.3	1775.6	10,0	26.2	1.2	27.0	7642.8
04/28/08	0805009-002A	76.3	<1.0068	83.9	42.0	1342.4	5.5	52.0	1.5	21.8	6040.8
04/29/08	0805009-003A	43.5	<0.966	37.8	58.0	885.5	2.4	161.0	<1.2	35.4	3783.5
04/29/08	0805009-004A	71.3	<1.0192	87.4	61. 9	1674.4	7.1	56.8	1.4	27.7	5896.8
04/30/08	0805021-001A	37.8	<1.0244	48.1	69.3	1024.4	2.9	65.4	<1.3	38.6	3861.2
04/30/09	0805021-002A	60.6	<0.9841	83.3	83.3	1135.5	9.1	27.3	1.5	24.2	5904.6
05/01/08	0805021-003A	38,6	<0.9864	42.7	56.7	813.8	2.5	33.7	<1.2	36.2	3945.6
05/01/08	0805021-004A	71.8	<0.9828	98.3	43.8	1512.0	7.1	24.9	2.0	18.9	7560.0
05/02/08	0805021-005A	30.7	<0.9684	36.3	58.1	677.9	2.8	37.9	<1.2	31.5	5326.2
05/02/08	0805021-006A	56.6	<1.0218	69.2	52.7	1179.0	4.9	36.2	1.3	41.7	6523.8
						·········	·			لي من الانتخاب ال	

		<u>NA</u>	71.8	57.2	1202	5.4	52.1	1.5	30.3	5649
STANDARD DEVIATION	15.2	NA	29.3	11.8	351	2.7	38.6	0.7	7.2	1355
COEFFICIENT OF VARIATION	28.0%	NA	40.8%	20.7%	29.2%	49.0%	74.0%	16.8%	23.7%	24.0%

Analyses performed by Life Science Laboratories, Inc

i

						_					
SAMPLE											
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Ha	Ni	Se	v	7n
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercurv	Nickel	Selenium	Vanadium	Zinc
12/19/08	0812217-001A	23.7	<1.0066	48.9	65.4	1006.6	7.9	42.4	11	20.1	4242 1
12/19/08	0812217-002A	20.5	<1.0231	50,4	55.1	1495.3	6.1	60.6	12	18.1	3777 6
12/20/08	0812217-003A	25.7	<1.029	58.8	28.7	808.5	61	52.9	1.2	17.6	4951.0
12/22/08	0812217-004A	25.3	<0.9792	23.7	62.0	546.7	4.8	30.2	<0 0702	17.0	4001.0
12/23/08	0812217-005A	<20.331	<20.331	45.2	143.1	753.0	10.5	142.1	<0.0192	49.0	2300.4
12/23/08	0812217-006A	20.4	< 0.9828	25.7	42.3	831.6	31	24.0	<0.0000	42.9	3087.3
12/24/08	0812217-007A	18.0	<0.9776	32.3	112.8	511 4	4.0	105 5	<0.9828	24.2	2268.0
12/29/08	0901008-001A	38.3	<0.975	66.8	13.5	2700.0	- 4.9	195.5	1 1.2	34.6	3008.0
12/30/08	0901008-002A	17.9	<0.070	48.4	41.0	2700.0	0.0	28.5	1.3	18.0	4800.0
12/30/08	0901008-003A	14.4	<0.0000	96 5	41.0	1192.0	5.6	24.6	1.1	13.4	3650,5
		14,4	-0.000	30,5	44.1	912.0	3.6	38.8	<0.988	22.8	2812.0
AVERAGE		22.7	NIA	40.7							
STANDARD DEV		<u>22.1</u> 0 E		43.7	63.8	1076	5.8	66.0	1.2	26.2	3486
		0.5	NA	13.3	34.3	608	2.0	53.9	0.2	11.5	886
	VARIATION	28.7%	NA	30.4%	53.8%	56.5%	34.7%	81.8%	12.3%	44.1%	25.4%

Sample		1	1	T	l	· · · · · · · · · · · · · · · · · · ·	1		r	· · · · · · · · · · · · · · · · · · ·	
Collection		• -									
Deta	Lao	AS	Be	Cd	Cr	Pb	Hg	Ni	Se	V	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromlum	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
5/11/2009	0905077-001A	38.8	<1.0	32.9	69.2	1012.8	2.6	50.6	1.1	41.4	3798
5/11/2009	0905077-002A	48.4	<1.0	60.0	72.3	999.7	2.9	35.4	3.8	32.3	4537.1
5/12/2009	0905077-003A	64.2	<1.0	70.6	58.5	1203.0	3.4	27.3	5.1	36.1	5453.6
5/12/2009	0905077-004A	80.6	<1.0	80.6	61.3	3707.6	5.6	96.7	5.3	26.6	6931.6
5/13/2009	0905106-001A	51.2	<1.0	56.2	62.8	1156.4	3.7	65.3	2.5	38.0	4790.8
5/13/2009	0905106-002A	39.7	<1.0	33.2	137,7	972.0	1.9	170.1	1.1	55.1	4131
5/14/2009	0905106-003A	45.4	<1.0	57.0	50.8	1463.0	4.4	54.7	2.0	29.3	7700
5/14/2009	0905106-004A	39.4	<1.0	41.1	53,4	985.2	2.7	55.0	1.7	34.5	4269.2
5/15/2009	0905106-005A	37.3	<1.0	51.1	57.6	1703.1	3.2	51.9	1.2	31.6	4217.2
5/15/2009	905106-006A	35.6	<1.0	34.7	59.5	769.1	1,8	78.6	<1.0	39.7	4217.7
				••••••	·		·				
Average		48.1	NA	51.7	68.3	1397.2	3.2	68.6	2.7	36.4	5004.6
Standard Dev	viation	14.3	NA	16.3	25,2	855.2	1.1	40.8	17	8.0	1300.0
Coefficient of	variation	29.7%	NA	31.6%	36.9%	61.2%	34.8%	59.5%	63.1%	22.0%	26.28
							01.070	00.078	00.176	22.070	20,270
Sample					·						
Collection	Lab	As	Be	Cď	Cr	Pb	Ho	Ni	Sa	v	75
Date	#	Arsenic	Beryllium	Cadmlum	Chromium	Lead	Mercury	Nickel	Selenium	v Vanadium	Zinc
10/16/2009	0910091-006A	29	<1.0	44	58	620	3.2	48	2	26	26000
10/10/19/09	0910091-007A	50	<1.0	86	38	1500	5.7	23	11	27	6300
10/20/2009	0910091-008A	35	<1.0	51	37	710	4.1	29	<10	23	4200
10/20/2009	0910091-009A	50	<1.0	88	41	1300	7.4	45	12	21	6100
10/21/2009	0910113-008A	46	<1.0	74	48	1300	2.6	32	11	36	5600
10/21/2009	0910113-009A	45	<1.0	87	36	1100	2.8	23	1.2		0000
10/22/2009	0910113-010A	29	<1.0	43	37	680	7.9	24	<1.0	20	0200
10/22/2009	0910113-011A	30	<1.0	64	78	900	3.8	55	~1.0	30	3900
10/23/2009	0910113-012A	33	<1.0	77	43	1000	8.0	40	2.5	26	5100
10/24/2009	0910113-013A	40	<1.0	100	35	1400	7.0	40	2.0	18	6000
			········			1400	1.5	32	2.7	15	7700
Average		38.7	NA	71.4	45.1	1051	5.42	25.4			
Standard D	eviation	8.6	NA	20.0	13.5	318.8	243	30.1	1.8	24.7	7710
Coefficient	of variation	22.1%	NA	28.1%	30.0%	30.30	<u></u>	11.3	0.7	6.0	6518.4
					00.070	00.070	44.0%	32.3%	40.3%	24.1%	84.50%

Sample			l		1	I	I		i	r	r
Collection	Lah	Δe	Bo	64	<u></u>	.					
Date	#	Arconic	Populium	Cademium	Cr	PD	Hg	Ni	Se	V	Zn
	<i>"</i>	Algenic	Berymun	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
5/24/2010	1006054-013A	45.0	<1.0	63.0	55.0	1000.0	3.4	47.0	1.8	38.0	5200
5/25/2010	1006054-014A	34.0	<1.0	44.0	48.0	660.0	2.5	44.0	1.1	35.0	3800
5/25/2010	1006054-015A	43.0	<1.0	72.0	47.0	1000.0	4,1	31.0	1.6	21.0	6300
5/26/2010	1006054-016A	24.0	<1.0	36.0	35.0	820.0	2.4	26.0	<1.0	28.0	3400
5/26/2010	1006054-017A	30.0	<1.0	49.0	46.0	1500.0	3.3	43.0	<1.0	35.0	4300
5/27/2010	1006054-018A	27.0	<1.0	39.0	40.0	530.0	4.5	57.0	<1.0	27.0	3000
5/27/2010	1006054-019A	34.0	<1.0	54.7	53.0	1100.0	5.8	38.0	1.3	28.0	4200
5/28/2010	1006054-020A	32.0	<1.0	32.0	57.0	560.0	3.5	27.0	<1.0	54.0	3300
5/28/2010	1006054-021A	37.0	<1.0	45.0	56.0	720.0	3.3	46.0	<1.0	33.0	4300
5/29/2010	1006054-022A	54.0	<1.0	46.0	56.0	800.0	5.3	28.0	<1.0	34.0	4100
Average		36.0	NA	48.1	49,3	869.0	3.8	38.7	1.5	33.3	4190.0
Standard Dev	viation	9.1	NA	12.3	7.5	292.4	1.1	10.4	0.3	8.8	971.2
Coefficient of	variation	25.2%	NA	25.5%	15.2%	33.6%	29.3%	26.9%	21.4%	26.6%	22.20/
								20.078	21.470	20.070	2.3.2 /0
Sample											
Collection	Lab	As	Be	Cd	Cr	Pb	Ha	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
9/27/2010	1010020-013A	64	<1.0	66	67	990	4.6	160	3.9	26	5200
9/28/2010	1010020-014A	30	<0.94	73	82	660	2.6	36	1.7	39	4100
9/28/2010	1010020-015A	26	<0.94	70	33	870	6.6	26	1.1	21	4400
9/29/2010	1010020-016A	30	<1.0	55	52	840	4.1	74	1.3	31	4800
9/29/2010	1010020-017A	49	<0.98	71	48	990	6.8	32	1.9	34	5500
9/30/2010	1010020-018A	38	<0.96	72	55	1200	3.8	49	2.3	25	5100
9/30/2010	1010020-019A	45	<1.0	110	37	1300	2.5	40	22	22	6600
10/1/2010	1010020-020A	21	<0.94	33	69	1300	2.4	60	1 1	49	3100
10/1/2010	1010020-021A	27	<1.0	38	58	820	1.6	56	1.4	46	3700
10/2/2010	1010020-022A	26	<1.0	54	5 9	1100	3.9	32	1.7	32	4100
											4100
Average		35.6	NA	64.2	56	1007	3.89	56.5	1.86	32.5	4660
Standard D	eviation	13.4	NA	21.5	14.7	216.1	1.7	39.3	0.8	9.7	4000
Coefficient	of variation	37.6%	NA	33.5%	26.3%	21.5%	44,9%	69.6%	44.6%	29.8%	21 60/
									11.070	20.070	21.070

Sample									r	I	
Collection	Lab	As	Be	Cd	Cr	Dh	U_	NE	<u> </u>		
Date	#	Arsenic	Bandlium	Cadmium	Chromium	PD	Hg .	NI Ni statu	Se	V	2n
		7 aborno	Derymum	Caurinum	Chilomium	Lead	Mercury	NICKEI	Selenium	Vanadium	Zinc
6/7/2011	K1106170-013A	51.0	0.4	56.0	57.0	1400.0	3.1	29.0	1.8	35.0	4800
6/7/2011	K1106170-014A	46.0	0.3	76.0	49.0	1000.0	5.5	23.0	1.7	27.0	5200
6/8/2011	K1106170-015A	45.0	0.4	53.0	56.0	850.0	2.5	65.0	1.7	32.0	4900
6/8/2011	K1106170-016A	52.0	0.3	81.0	59.0	1700.0	7.0	34.0	1.5	29.0	5600
6/9/2011	K1106170-017A	39.0	0.3	61.0	50.0	1100.0	3.6	50.0	1.6	29.0	5200
6/9/2011	K1106170-018A	41.0	0.4	61.0	46.0	710.0	4.0	32.0	2.3	30.0	5100
6/10/2011	K1106170-019A	22.0	0.6	31.0	57.0	500.0	6.4	32.0	3.1	33.0	3300
6/10/2011	K1106170-020A	34.0	0.4	52.0	52.0	980.0	3.3	40.0	1.9	34.0	4300
6/11/2011	K1106170-021A	29.0	0.5	37.0	53.0	800.0	4.8	36.0	1.4	44.0	5000
6/11/2011	K1106170-022A	35.0	0.4	54.0	51.0	920.0	4.2	32.0	1.2	30.0	5000
								·			
Average		39.4	0.4	56.2	53.0	996.0	4.4	37.3	1.9	32.3	4840.0
Standard Dev	viation	9.6	0.1	15.2	4.2	343.7	1.5	12.0	0.5	4.8	634.6
Coefficient of	variation	24.4%	19.4%	27.1%	7.9%	34.5%	33.1%	32.3%	27.7%	14.9%	13.1%
Sample											
Collection	Lab	As	Be	Cd	Cr	РЪ	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/18/2011	K1110337-013A	34	0.28	64	44	870	3.9	33	1.4	32	6600
10/18/2011	K1110337-014A	33	0.33	240	95	1600	4.5	28	1.3	35	4400
10/19/2011	K1110337-015A	32	0.39	46	58	830	2.3	50	1.4	33	3900
10/19/2011	K1110337-016A	36	0.41	58	61	880	4.3	38	2	36	5000
10/20/2011	K1110337-017A	39	0.34	92	59	1100	13	42	1.9	28	6900
10/20/2011	K1110337-018A	29	0.32	72	54	1000	11	34	1.6	32	5300
10/21/2011	K1110337-019A	28	0.33	62	52	890	5.4	29	4.1	28	6300
10/21/2011	K1110337-020A	35	0.41	88	48	1500	7	26	2.7	30	5800
10/26/2011	K1110337-021A	26	0.52	35	59	690	3.2	45	1.3	33	4000
10/26/2011	K1110337-022A	43	0.27	75	41	960	3.7	28	1.8	32	5400
	· · · · · · · · · · · · · · · · · · ·										
Average		33.5	0.36	83.2	57.1	1032	5.83	35.3	1.95	31.9	5360
Standard D	eviation	5.1	0.1	57.8	14.9	294.3	3.5	8.2	0.9	2.6	1055.4
Coefficient	of variation	15.4%	20.7%	69.4%	26.2%	28.5%	60.4%	23.2%	44.5%	8.3%	19.7%

Sample Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
6/12/2012	K1206354-001A	93	0.43	53	83	600	3	73	1.2	29	3800
6/12/2012	K1206354-002A	70	0.42	50	61	620	5	27	0.58	31	3400
6/13/2012	K1206354-003A	82	0.45	60	76	1100	3.5	35	0.92	26	4000
6/13/2012	K1206354-004A	60	0.44	45	66	420	2.5	42	0.84	29	3400
6/20/2012	K1206354-005A	42	1	29	43	830	1.8	37	0.71	26	2800
6/14/2012	K1206354-006A	53	0.38	59	53	1200	4.7	23	1.6	25	3600
6/15/2012	K1206354-007A	46	0.59	27	77	2000	2.5	53	0.87	45	3400
6/12/2012	K1206354-008A	66	0.37	55	57	400	4.8	27	1.6	32	4700
6/19/2012	K1206354	75	0.39	56	56	1300	3.2	25	1.4	28	4800
6/19/2012	K1206354-010A	68	0.42	45	180	1200	2.6	76	1	26	7400
	· · · · · ·								·····		
Average		65.5	0.5	47.9	75.2	967.0 [°]	3.4	41.8	1.1	29.7	4130.0
Standard Devia	tion	15.9	0.2	11.7	38.8	494.3	1.1	19.5	0.4	5.9	1301.3
Coefficient of va	riation	24.2%	38.8%	24.4%	51.6%	51. 1%	33.2%	46.6%	33.7%	19.7%	31.5%
											• .
Sample											
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	V	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
9/25/2012	K1210235-001A	65	0.38	48	50	1000	2.4	45	0.64	28	5,000
9/26/2012	K1210235-002A	30	0.36	28	47	490	1.9	37	2.7	25	2900
9/2//2012	K1210235-003A	39	0.4	34 69	40 50	480	1.6	20	0.5	38	5000
10/2/2012	K1210235-004A	41	0.39	54	J2 49	660	4.2	29	1.4	23	6400
10/3/2012	K1210235-005A	44	0.04	61	48	1200	4.4	28	1.1	26	4800
10/4/2012	K1210235-007A	48	0.51	64	74	1100	3.7	82	0.65	34	5100
10/5/2012	K1210235-008A	43	0.4	48	52	1000	1.4	95	0.59	30	17000
10/5/2012	K1210235-009A	65	0.39	62	53	1100	6.4	52	1.2	34	5200
10/6/2012	K1210235-010A	33	0.35	34	53	470	4	33	0.5	30	3200
Average		44.9	0.45	49.1	52.4	900	3.27	49.8	1.0	29.8	5800
Standard Dev	viation	11.8	0.0	13.1	8.0	355.4	1.6	24.1	0.7	4.6	4080.6
Coefficient of	variation	26.3%	10.4%	26.6%	15.2%	39.5%	47.7%	48.4%	70.4%	15.4%	70.4%

Analysis performed by Life Science Laboratories, Inc.

VI.A. Mean Values Ash Data Wet Weight

VI.B. Mean Values Ash Data Wet Weight

VI.C. Mean Values Ash Data Wet Weight

SAMPLE											
COLLECTION	LAB	As	Be	Cd	Cr	Pb	На	Ni	Se	v	7n
DATE	##	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/26/98	980808	34.2	0.92	30.6	54.8	979	7.99	57.3	<1.14	37.9	4090
10/26/98	980809	29.9	0.66	33.4	59.6	982	8.10	52 7	<1.27	40.0	4970
10/27/98	980810	46.8	0.96	36.4	180	1840	8.96	259	<3.21	47.0	4630
10/27/98	980811	31.6	0.83	39.9	61.6	18500	8.60	50.2	<1.23	32.0	5030
10/28/98	980812	42.7	0.84	39.7	55.4	1980	10.4	42.5	<1.20	30.0	4300
10/28/98	980813	36.2	0.70	46.2	83.1	1880	11.4	97.3	<1.53	47.8	5720
10/29/98	980814	49.8	0.85	43.7	82.2	1310	12.1	71 1	<1.31	42.1	1880
10/29/98	980815	41.4	0.92	40.5	59.8	3510	18.7	22.6	<1.31	35.1	5050
10/30/98	980816	36.8	0.65	28.2	45.8	914	9.04	50.7	<3.10	51.4	3840
10/30/98	980817	39.2	0.65	28.3	44.3	1410	7.87	74.4	<1.28	35.1	4990
											4000
AVERAGE		38.9	0.80	36.7	72.7	3331	10.3	77.8	N/A	40.9	4450
STANDARD DEV	IATION	6.1	0.12	6.0	37.8	5108	3.1	63.3	N/A	5.8	1002
CUEFFICIENT OF	- VARIATION	<u>15.7%</u>	14.7%	16.4%	52%	153.4%	30.2%	81%	N/A	14.2%	22.5%

.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Bervllium	Cd Cadmium	Cr	Pb	Hg	Ni	Se	V	Zn Zino
04-19-99	990215	38.0	<0.62	36.8	62.6	950	5 70	91 2	1.60	38.6	2580
04-19-99	990216	25.5	<0.56	36.8	128.0	2090	4.30	38.1	1.00	41.0	10700
04-20-99	990217	34.6	<0.66	39.1	62.6	970	5.10	82.8	1.00	43.0	3640
04-20-99	990218	26.0	<0.61	42.7	61.3	815	7.00	39.8	1.70	25.0	3650
04-21-99	990219	36.2	<0.63	45.8	65.0	1120	7.30	1910.0	1.90	35.0	4890
04-21-99	990220	<u>39.0</u>	<0.65	58.2	299.0	1090	6.90	57.9	2.30	42.5	5010
04-22-99	990221	29.7	<0.61	43.6	54.9	1270	5.10	48.2	1.10	38.9	3600
04-22-99	990222	37.2	<0.68	54.0	80.5	1560	7.00	42.7	1.60	32.8	4670
04-23-99	990223	37.7	<0.62	50.2	64.5	1060	6.00	36.6	2.10	37.5	4200
04-23-99	990224	31.1	<0.64	43.6	68.9	1220	7.20	55.9	1.70	30.4	4290
		<u> </u>									
AVERAGE		33.5	N/A	45.1	94.7	1215	6.16	240	1.70	36.5	4823
STANDARD DEV	ATION	4.8	N/A	6.8	70.9	350	1.01	557	0.33	5.4	2027
COEFFICIENT O	- VARIATION	14.3%	N/A	15.1%	74.8%	28.8%	16.5%	231.7%	19.5%	14.9%	42.0%

Analyses performed by ELS.

	1	· · · · · · · · · · · · · · · · · · ·									
11-08-99	990747	37.5	<3.2	37.9	76.1	999	7.25	305.0	<3.2	46.8	4020
11-08-99	990748	43.5	<3.6	42.6	68.5	1130	7.71	378.0	4 90	43.1	4650
11-09-99	990749	43.5	<3.2	41.4	70.2	1350	6 18	85.1	<3.2	62.0	4420
11-09-99	990750	30.4	<3.1	40.6	76.1	883	6.88	61.0	-0.2	42.0	4130
11-10-99	990751	33.6	<3.3	40.7	85.6	1120	6.01	01.0		43.8	3700
44 40 00		00.0			00.0	1130	0.01	80.0	<3.3	53.8	4410
11-10-99	990752	34.4	<3.3	48.3	69.0	1900	7.06	58.2	<3.3	36.0	4510
11-11-99	990753	36.2	<3.1	40.0	58.6	1190	6.57	48.9	<31	61.6	2000
<u>11-11-99</u>	990754	33.4	<3.3	45.6	67.6	1200	10.20	50.0	-2.2	44.0	3900
11-12-99	000755	22.6	-0.4	00.0	00.4	1200	10.20	09.0		41.2	4680
	000100	32.0	<u><3.4</u>	38.2	69.4	972	8.64	54.8	<3.4	40.1	3810
11-12-99	990756	33.4	<3.2	51.1	55.8	1210	9.01	225.0	<32	32.6	5020
										02.0	0020
AVERAGE		35.9	NI/A	126	60.7	4400					······
STANDARD DEV				42.0	09.7	1196	7.55	136	4.90	46.3	4283
CORECICIENT		4.2	N/A	4.1	8.1	267	1.28	115	0.00	00	412
OOLFFICIENT O	F VARIATION	11.8%	N/A	9.7%	11.6%	22.4%	16.0%	94.09/	0.00	0.9	413
							L 10.370	04.9%	0.0%	21.3%	9.6%

SAMPLE							T	<u> </u>			
COLLECTION	LAB	As	Be	Сч	Cr	Dh	Цa	ы	6.		•••
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	lead	Mercury	Nickol	Selenium	V Vanadium	ZN
05/08/00	2000-0243	49.7	<0.63	45.5	75.4	1350	9.00	130.0	1.50		4000
05/08/00	2000-0244	34.1	<0.60	41.5	75.9	843	6.40	69.3	1.00	20.0	4000
05/09/00	2000-0245	91.8	<0.63	48.3	82.4	1390	10.70	300 0	3 20	20.0	6070
05/09/00	2000-0246	32.3	<0.65	40.3	119.0	976	8.00	151.0	1 20	20.6	0970
05/10/00	2000-0247	39.9	< 0.33	43.5	72.6	901	7 90	51.7	1.20	29.0	4720
05/10/00	2000-0248	32.9	<0.62	43.1	76.8	990	8 20	59.0	1.20	30.4	7590
05/11/00	2000-0249	66.4	<0.62	48.8	131.0	891	12.80	358.0	1,40	20.0	3080
05/11/00	2000-0250	43.4	<0.64	41.6	66.2	1090	7 30	38.0	1.90	<u> </u>	5070
05/12/00	2000-0251	32.3	<0.62	36.3	70.3	853	9.60	357.0	<u>~0.04</u> 1.70	33.0	<u> </u>
05/12/00	2000-0252	46.8	<0.67	51.6	89.8	1010	9.00	56.4	1.10	24.7	4020
							0.00 1	00.4	1.00	34.7	4210
AVERAGE		47.0	NA	44.1	85.9	1029	8.89	158	1.55	33.9	4869
STANDARD DEV	IATION	18.0	NA	4.3	20.6	185	1.73	125	0.78	4.7	1280
CUEFFICIENT O	F VARIATION	38.4%	NA	9.8%	24.0%	18.0%	19.5%	79.3%	50.1%	13.7%	26.3%
A	-										
Analyses performed b	y ELS.										
12/10/00	2000 0705	05.0	0.0-								
12/11/00	2000-0785	35.6	<0.65	36.0	54.1	1300	12.00	42.0	1.40	57.0	4010
12/11/00	2000-0786	19.5		23.1	48.3	826	6.71	36,2	1.20	27.8	2350
12/11/00	2000-0787	31.2	<0.66	35.5	66.2	990	5.09	60.0	1.80	49.5	3590
12/12/00	2000-0788	28.9	<0.68	42.7	63.1	861	6.72	52.1	1.60	36.1	4050
12/12/00	2000-0789	19.1	<0.67	36.2	92.6	1080	5.84	419.0	1.80	26.0	4940
12/13/00	2000-0790	20,2	<0.68	35.9	68.0	1160	7 50	64.6	1.00	20.5	4040
12/13/00	2000-0791	19.6	<0.67	36.1	69.6	938	8 31	29.1	1.00		3560
12/14/00	2000-0792	28.5	<0.68	32.4	71.6	1160	7.44	64.0	1.00	24.2	2960
12/14/00	2000-0793	21.7	<0.58	31.3	47.1	1110	5 70	04.2	1.80	35.3	2980
12/15/00	2000-0794	26.2	<0.64	26.4	45.1	0/10	5.70	01.8	1.80	25.4	3880
				<u> </u>	40.1	9410	0.37	32.6	1.60	25.9	2700
AVERAGE		25.1	ΝΔ	32.6	60.0	4004					

STANDARD DEVILATION		AVI	33.0	62.6	1884	707	97	1.64	04 7	
UTANDARD DEVIATION	5.5	NΔ	52	40.0	0540	1.01	- 07	1.04	34.7	i 3492 -
COFFFICIENT OF VARIATION			0.0	13.8	2513	1.91	111	0.20	10.0	740
STATION VARIATION	22.1%	NA I	15.7%	22 0%	122 40/	07.444		0.20	10.0	L 710
			10,770	22.070	133.4%	27.1%	127.8%	11.9%	30 50%	20.20/
								11.070	00.076	20.3%

SAMPLE	1	1	1	· · · · · · · · · · · · · · · · · · ·	1				r		
COLLECTION	LAB	As	Be	Cd	Cr.	Dh	Цa	612	0-		-
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	V Vanadium	Zn Zine
03/19/01	01-0167	11.3	0.3	28.2	55.7	860	3 15	50.1	0.86	25.5	2660
03/19/01	01-0168	8.3	0.490	20.1	67.6	1080	2.85	29.3	1.00	23.0	2450
03/20/01	01-0169	12.2	0.280	26.9	48.8	813	5.00	31.3	1.60	20.3	2930
03/20/01	01-0170	14.6	0.280	22.5	50.1	555	2 59	44.9	1.00	10.6	2100
03/21/01	01-0171	11.7	<0.19	23.0	33.7	458	4 10	32.2	1.40	15.0	2080
03/21/01	01-0172	10.6	0.340	26.8	46.0	574	5.63	36.7	1 70	27.0	6490
03/22/01	01-0173	15.5	0.350	41.4	87.8	746	4.73	96.0	1 20	31.4	2830
03/22/01	01-0174	8.3	0.370	22.2	45.1	511	4.72	63.6	1 20	26.0	2000
03/23/01	01-0175	11.4	<0.19	18.3	38.5	899	3.84	48.0	3.50	28.5	2680
03/23/01	01-0176	11.3	0.270	32.9	39.0	743	4.41	60.4	1.30	19.7	2690
									1.00	10.1	2030
AVERAGE		11.5	0.271	26.2	51.2	723.9	4.1	49.3	1.5	23.7	2840.0
STANDARD DEV	<u>IATION</u>	2.2	0.1	6.5	15.2	187.6	0.9	19.2	0.7	4.7	1244.0
COEFFICIENT O	F VARIATION	18.9%	19.7%	24.7%	29.7%	25.9%	22.9%	39.1%	46.9%	19.9%	43.8%
Analyses performed b	v ELS.										
	· · · · · · · · · · · · · · · · · · ·										
12/10/01	01-0777	45.8	<0.65	58.3	42.8	3760	7.60	51.9	3.80	37.7	4880
12/10/01	01-0778	24.0	<0.64	33.6	39.6	672	7.80	27.7	1 90	32.2	3300
12/11/01	01-0779	28.8	<0.69	59.0	63.3	1200	9.30	49.4	2.80	31.0	4640
12/11/01	01-0780	27.2	<1.6	42.4	60.0	944	6.10	48.2	2.00	28.5	<u>4040</u> 5040
12/12/01	01-0781	26.8	<0.69	37.3	53.9	799	5 60	64.8	3 70	41 7	2900
12/12/01	01-0782	30.7	<0.62	46.8	41.9	965	7.60	43.5	4.00	20.0	3000
12/13/01	01-0783	31.3	<0.63	50.6	38.4	815	6.60	40.7	2.00	20.0	4540
12/13/01	01-0784	32.1	<0.69	46.6	44.9	1740	2.80	53.2	2.00	33.5	3890
12/14/01	01-0785	47.6	<0.71	104.0	49.9	1660	2 70	38.5	4.10		3900
12/14/01	01-0786	18.7	<0.68	33.0	59.5	1480	1.80	44.2	4.10	40.4	5590
					00.0	0077	1.00	44.0	2.20	53.8	3060

	1 18.7	<0.68	33.0	59.5	1480	1.80	44.3	2.20	53.8	3060
AVERAGE	31.3	ΝΔ	51.2	40.4	4400 5					
STANDARD DEVIATION	8.6	NA	19.6	87	862.0	5.8	46.2	3.1	35.6	4273.0
COEFFICIENT OF VARIATION	27.3%	NA	38.4%	17.7%	61.4%	<u> </u>	9.4	0.7	7.7	752.2
					01.470	41.070	20.4%	23.1%	21.5%	17.6%

SAMPLE		1			· · · · · · · · · · · · · · · · · · ·		1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1	
COLLECTION	LAB	As	Be	64	<u> </u>	Dh	11-	N.P.			_
DATE	#	Arsenic	Beryllium	Cedmium	Chromium	Lood	Moreum	Ni Niakal	Se		Zn
05/06/02	02-0241	30.7	<0.62	37.6	62.4	011					
05/06/02	02-0242	25.6	<0.64	20.0	57.5	720	2.00	91,4 70.5	1.00	38.8	3310
05/07/02	02-0243	47.3	<0.61	52.0	57.5	027	2.00	/9.5	1.50	31.3	3630
05/07/02	02-0244	27.1	<0.01	40.6	114.0	301	5.50	47.3	1.90	29.3	4300
05/08/02	02-0245	20.6	<0.01	<u>49.0</u>	70.0	769	8.10	66.3	1.40	32.8	4010
05/08/02	02-0240	23.0	<0.07	<u> </u>	79.0	1200	7.70	70.2	2.00	38.0	5100
05/09/02	02.0240	23.3	<0.05	30.5	66.8	835	2.40	76.9	0.71	30.6	3100
05/00/02	02-0247	37.0	<0.63	34.0	70.7	975	4.30	37.7	1.20	30.2	2760
05/09/02	02-0248	23.6	<0.62	23,7	46.5	751	2.90	35.6	1.20	23.4	2610
05/10/02	02-0249	44.9	<0.65	42.4	<u>55.1</u>	<u>91</u> 2	7.50	35.3	2.40	31.3	3660
05/10/02	02-0250	57.4	<0.67	59.9	73.1	962	6.80	39.3	2.50	32.2	4990
		047									
STANDARD DEV		34.7	NA	41.6	68.1	898.4	5.4	58.0	1.7	31.8	3747.0
		21.09/		12.0	17.9	131.5	2.1	20.1	0.5	4.1	815.4
COLI I IOILITI O	VANAHON	31.0%	NA	28.7%	26.3%	14.6%	38.2%	34.7%	32.2%	13.0%	21.8%
Analyses performed by											
Analyses performed by	y ELS.										
Analyses performed by	y ELS.	44.7									
Analyses performed by	y ELS.	44.7	<1.34	57.6	60.9	1310	6.02	56.8	2.35	45.3	5380
Analyses performed by 12/02/02 12/02/02	y ELS. 02-0767 02-0768	<u>44.7</u> 21.8	<1.34 <1.34	57.6 32.4	60.9 46.8	<u>1310</u> 943	6.02 5.37	<u>56.8</u> 87.1	2.35 <1.34	45.3 38.2	<u>5380</u> 3020
Analyses performed by 12/02/02 12/02/02 12/03/02	y ELS. 02-0767 02-0768 02-0769	44.7 21.8 27.6	<1.34 <1.34 <1.21	57.6 32.4 28.9	60.9 46.8 36.6	1310 943 1060	6.02 5.37 10.80	56.8 87.1 31.5	2.35 <1.34 1.26	45.3 38.2 35.1	5380 3020 2430
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02	y ELS. 02-0767 02-0768 02-0769 02-0770	44.7 21.8 27.6 24.7	<1.34 <1.34 <1.21 <1.45	57.6 32.4 28.9 39.1	60.9 46.8 36.6 47.9	1310 943 1060 868	6.02 5.37 10.80 8.80	56.8 87.1 31.5 33.7	2.35 <1.34 1.26 <1.45	45.3 38.2 35.1 82.1	5380 3020 2430 3880
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771	44.7 21.8 27.6 24.7 35.6	<1.34 <1.34 <1.21 <1.45 <0.68	57.6 32.4 28.9 39.1 40.4	60.9 46.8 36.6 47.9 57.7	1310 943 1060 868 2260	6.02 5.37 10.80 8.80 6.47	56.8 87.1 31.5 33.7 49.4	2.35 <1.34 1.26 <1.45 2.11	45.3 38.2 35.1 82.1 31.1	5380 3020 2430 3880 3370
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772	44.7 21.8 27.6 24.7 35.6 33.6	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72	57.6 32.4 28.9 39.1 40.4 45.3	60.9 46.8 36.6 47.9 57.7 48.5	1310 943 1060 868 2260 1820	6.02 5.37 10.80 8.80 6.47 19.90	56.8 87.1 31.5 33.7 49.4 55.6	2.35 <1.34 1.26 <1.45 2.11 2 19	45.3 38.2 35.1 82.1 31.1 30.9	5380 3020 2430 3880 3370 2170
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773	44.7 21.8 27.6 24.7 35.6 33.6 32.9	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71	57.6 32.4 28.9 39.1 40.4 45.3 60.9	60.9 46.8 36.6 47.9 57.7 48.5 49.7	1310 943 1060 868 2260 1820 2230	6.02 5.37 10.80 8.80 6.47 19.90	56.8 87.1 31.5 33.7 49.4 55.6 54.4	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72	45.3 38.2 35.1 82.1 31.1 30.9	5380 3020 2430 3880 3370 3170
Analyses performed by 12/02/02 12/03/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3	1310 943 1060 868 2260 1820 2230 1860	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91	56.8 87.1 31.5 33.7 49.4 55.6 54.4	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72	45.3 38.2 35.1 82.1 31.1 30.9 32.7	5380 3020 2430 3880 3370 3170 4220
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/05/02 12/06/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3	1310 943 1060 868 2260 1820 2230 1860 1320	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5	5380 3020 2430 3880 3370 3170 4220 3340
Analyses performed by 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/06/02 12/06/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0776	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63 <0.63	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0 20.1	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3 45.4	1310 943 1060 868 2260 1820 2230 1860 1320 222	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3	5380 3020 2430 3880 3370 3170 4220 3340 2700
Analyses performed by 12/02/02 12/03/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/05/02 12/06/02	y ELS. 02-0767 02-0768 02-0779 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0776	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63 <0.63	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0 20.1	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3 45.4	1310 943 1060 868 2260 1820 2230 1860 1320 322	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52 3.31	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3 36.3	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35 1.30	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3 29.5	5380 3020 2430 3880 3370 3170 4220 3340 2700 1480
Analyses performed by 12/02/02 12/03/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/05/02 12/06/02 AVERAGE	y ELS. 02-0767 02-0768 02-0779 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0776	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1 30.0	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63 <0.63	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0 20.1	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3 45.4	1310 943 1060 868 2260 1820 2230 1860 1320 322	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52 3.31	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3 36.3	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35 1.30	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3 29.5	5380 3020 2430 3880 3370 3170 4220 3340 2700 1480
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/06/02 AVERAGE STANDARD DEVI	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0776 ATION	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1 30.0 6.9	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63 <0.63 <0.63	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0 20.1 40.3 11.8	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3 45.4 49.7 6.4	1310 943 1060 868 2260 1820 2230 1860 1320 322 1399.3 600.0	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52 3.31 9.1	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3 36.3 50.2	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35 1.30	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3 29.5 38.9	5380 3020 2430 3880 3370 3170 4220 3340 2700 1480 3299.0
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/06/02 AVERAGE STANDARD DEVI, COEFFICIENT OF	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0775 02-0776 ATION VARIATION	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1 30.0 6.9 22.8%	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63 <0.63 <0.63 NA NA NA	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0 20.1 40.3 11.8 29.2%	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3 45.4 49.7 6.4 12.8%	1310 943 1060 868 2260 1820 2230 1860 1320 322 1399.3 600.0 42.9%	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52 3.31 9.1 4.4 48.2%	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3 36.3 50.2 15.6	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35 1.30 1.5 0.9	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3 29.5 38.9 15.1	5380 3020 2430 3880 3370 3170 4220 3340 2700 1480 3299.0 1002.0

Analyses performed by ELS.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmlum	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
08/02/03	15503164	18.0	<0.60	18.0	120.0	6500	1.60	270.0	<0.60	28.0	1700
06/02/03	15503165	25.0	<0.55	25.0	49.0	700	1.40	100.0	<0.55	29.0	15000
06/03/03	15503168	13,0	<0.57	16.0	23.0	1200	1.30	13.0	<0.57	12.0	1500
06/04/03	16103027	29.0	<0.65	33.0	40.0	910	3.20	130.0	<0.65	30.0	3800
06/04/03	16103028	19.0	<0.59	18.0	34.0	320	8.20	26.0	<0.59	14.0	1700
06/05/03	16103029	49.0	<0.66	44.0	62.0	870	5.10	47.0	<0.66	48.0	5100
06/05/03	16103030	42.0	<0,75	37.0	72.0	780	7.70	30.0	<0.75	31.0	3500
06/06/03	16103031	38.0	<0.63	38.0	54.0	750	4.30	50.0	<0.63	42.0	3500
06/06/03	16103032	45.0	<0.66	46.0	67.0	920	5.70	85.0	<0.66	28.0	7200
06/07/03	16103026	71.0	<0.61	38.0	65.0	830	4.50	93.0	<0.61	39.0	5700
AVERAGE		34.9	NA	31.3	58.6	1378.0	4.3	84.4	NA	30.1	4870.0
STANDARD DEV	IATION	16.8	NA	10.6	25.3	1720.0	2.4	71.3	NA	10.7	3809.7
COEPFICIENT O	VARIATION	48.1%	NA	34.0%	43.2%	124.8%	54.7%	84.5%	NA	35.5%	78.2%

Analyses performed by Upstate Laboratories inc.

· · · · · · · · · · · ·

COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
06/14/04	E1540	38.0	<1.2	31.0	53.0	980	3.60	47.0	1.00	32.0	4200
06/14/04	E1541	29.0	<1.1	25.0	48.0	730	1.40	28.0	0.83	23.0	2000
06/15/04	E1542	45.0	<1.2	33.0	78.0	1500	2.90	65.0	1 30	51.0	3800
06/15/04	E1543	51.0	<12	45.0	100.0	1100	7.70	120.0	<5.9	<50	4000
06/16/04	E2029	39,0	<1.2	45.0	62.0	1100	5.90	62.0	1.50	36.0	4200
06/16/05	E2030	40.0	<1.3	48.0	58.0	1300	3.90	410	2.60	20.0	5100
06/17/05	E2031	31.0	<1.2	39.0	67.0	790	4 30	44.0	1.50	20.0	4200
06/23/04	E2626	33.0	<1.2	38.0	68.0	970	4.60	43.0	2 20	30.0	9000
06/25/04	E2627	61.0	<1.3	98.0	85.0	1900	7.50	110.0	2.20	24.0	7800
08/27/04	E2628	54,0	<1.2	79.0	75.0	1200	3.90	58.0	2.10	42.0	4500
							0.00	00.0		42.0	4000
AVERAGE		42.1	NA	48.1	69,4	1157.0	4.6	98.7	15	30.7	4470.0
STANDARD DEVI	ATION	10.0	NA	21.7	14.8	328.9	1.9	107.4	07	12.6	1220.7
COEFFICIENT OF	VARIATION	23.7%	NA	45.1%	21.4%	28.4%	40.9%	108.8%	48.8%	41.0%	27.5%

Analyzes performed by O' Brien & Gere Laboratories, Inc.

SAMPLE COLLECTION DATE	LAB	As Arsenic	Be Beryllum	Cd Cadmlum	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V	Zn
12/23/04	F1433	19.0	<1.3	36.0	44.0	730	5.50	37.0	0.02		Zing
12/23/04	F1434	23	<1.3	47.0	65.0	2500	7 10	27.0	4 50	20.0	5100
12/27/04	F1513	27.0	<1.1	44 0	50.0	1200	16.00	37.0	1.50	28.0	4600
12/27/04	F1514	25.0	<1.2	35.0	59.0	820	0.40	44.0	1.00	42.0	4600
12/28/04	F1515	20.0	<1 3	40.0	100.0	4600	9.10	130.0	1,80	30,0	6000
12/28/04	F1516	25.0	<u></u>	60.0	67.0	1000	0.10	45.0	1.00	44.0	4100
12/29/04	F1517	220	-1.0	44.0	07.0	860	5.80	98.0	1.40	24.0	4400
12/28/04	£1518	97.0		41.0	48.0	1000	4.30	35.0	1.20	41.0	3900
12/30/04	E1510	27.0	\$1.3	53.0	65.0	1800	5,70	58.0	1.60	36.0	4600
12/20/04	F1519	18.0	<1.2	43.0	41.0	770	6.00	34.0	1.00	23.0	3600
12/30/04	F 1520	23.0	<1.2	43.0	64.0	790	4.20	56.0	1.70	28.0	4300
VERAGE		220	NIA	40.0							1000
TANDARD DEVI	ATION	3.0		<u>43.2</u> 5.4	49.4	1197.0	7.0	57,4	1.3	32.4	4520.0
OEFFICIENT OF	VARIATION	13.0%	NA	12,5%	28.6%	549.0 45.9%	47.0%	<u>30.2</u> 52.7%	0.3	7.3	633.7

Analyses performed by O' Brien & Gare Laboratories, Inc

SAMPLE									l		
COLLECTION	LAB	As	Be	Cđ	Cr	Pb	На	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vapadium	Zina
05/16/05	0505100-001A	51.0	<1.1	51.0	64.0	1700	4.00	43.0	1.50	52.0	6000
05/16/05	0505100-002A	56.0	<1.2	49.0	74 0	1300	4 20	40.0	1.30	40.0	0200
05/17/05	0505100-003A	50.0	<1.1	56.0	80.0	1000	4 20	49.0	1.70	46.0	6100
05/17/05	0505100-004A	73.0	<1.2	75.0	83.0	2400	4.00	77.0	1.70	33.0	5900
05/18/05	0505131-001A	56.0	<1.1	62.0	84.0	1500	4.70	11.0	2.10	37.0	7600
05/18/05	0505131-002A	45.0	<12	62.0	72.0	2100	4.70	93.0	1.80	39.0	6200
05/19/05	0505131-003A	44.0	<1.2	58.0	65.0	1400	4.70	49.0	2.00	32.0	5900
05/19/05	0505131-004A	59.0	<12	69.0	74.0	1400	4.90	49.0	1.50	35.0	5400
05/20/05	0505131-0054	50.0	-1.2	0.00	71.0	1600	5.90	55.0	1.70	36.0	7000
05/20/05	0505101-000A	50.0	<u> </u>	60.0	60.0	1600	0.75	61.0	1.10	47.0	6100
00/20/03	0505151-006A	53.0	<1.2	77.0	140	1800	6.10	270	1.90	30.0	7600
	·······										
AVERAGE		53.7	NA	61.8	79.3	1730.0	4.4	83.8	1.7	38.7	6400.0
STANDARD DEV	IATION	7.8	NA	8.8	21.6	316.4	1.4	64.4	0.3	6.9	707 1
COEFFICIENT O	F VARIATION	14.6%	NA	14.3%	27.3%	18.3%	31.2%	76.9%	16.0%	17.8%	11.0%

Analyses performed by Life Science Laboratories, Inc

SAMPLE											······
COLLECTION	LAB	As	Be	Cd	Cr	Ph	На	Ni	50	N N	7-
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vonodium	20
12/12/05	0512118-001A	29.0	<1.2	49.0	61.0	1200	4 90	70.0	1 20	vanaulum	
12/12/05	0512118-002A	24.0	<1.3	37.0	60.0	1000	2 10	40.0	1.30	<120	8200
12/13/05	0512118-003A	20.0	<12	49.0	54.0	1400	2.00	49.0	1.60	26.0	3800
12/13/05	0512118-004A	25.0	<12	37.0	02.0	4000	3.90	230	0.86	37.0	4700
12/14/05	0603017-001A	18.0	<1.2	280	<u> </u>	1300	<0.12	73.0	1.30	<60	4000
12/14/05	0512118-0064	24.0	~1.0	30.0	53.0	1700	3.80	47.0	0.67	41.0	4400
12/15/05	0512142 0014	17.0	<u> </u>	37.0	68.0	720	3.30	51	0.89	<60	3900
12/15/05	0512142-007A	17.0	<1.3	30.0	49.0	<u>620</u>	2.20	100	1.00	<63	3500
12/18/05	0512142-002A	27.0	<1.2	50.0	59.0	1300	5.40	37.0	1.40	34.0	4700
12/10/05	0512142-003A	26.0	<1.4	41.0	67.0	1200	4.80	50.0	2.00	<70	4100
12/10/05	0512142-004A	26.0	<1.3	55.0	54.0	1100	5.50	40.0	2.20	34.0	5700
											0100
AVERAGE		23.6	NA	42.1	60.7	1244.0	4.1	74 7	13	24.4	4700.0
STANDARD DEV		3.8	NA	7.7	9.1	368.4	11	54.8	0.5	4	4700.0
COEFFICIENT OI	VARIATION	16.0%	NA	18.2%	15.1%	29.6%	26.8%	72 20/	0.5	4.9	1306.9
							40.070	13.3%	<u> </u>	14.2%	_27.8%

	#	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn
04/10/06 06	04077-001A	50,0	<1.2	83.0	57.0	1800	2.50	44 0	1.80	34.0	6400
04/11/06 06	04077-002A	60.0	<1.3	80.0	75.0	1700	7 60	46.0	1.00	31.0	6100
04/12/06 06	04090-001A	34.0	<1.2	39.0	96.0	1100	1.20	22.0	1.30	47.0	5200
04/13/06 06	04090-002A	47.0	<1.2	61.0	51.0	1200	4 00	84.0	1.00	55.0	5200
04/14/06 06	04090-003A	47.0	<1.2	79.0	61.0	1500	<u> </u>	45.0	1.00	20.0	5900
NA	NA					1000	0.00		1.40		0000
NA	NA										
NA	NA							·			
NA	NA										
NA	NA				·····						

AVERAGE	47.6	NA	68.4	68.0	1460.0	5.0	48.2	1.6	39.4	5780.0
STANDARD DEVIATION	8.3	NA	16.6	16.1	272.8	3.2	20.0	0.2	9.9	440.0
COEFFICIENT OF VARIATION	17.5%	NA	24.3%	23.6%	18.7%	64.3%	41.5%	15.5%	25.1%	7.6%

Analyses performed by Life Science Laboratories, Inc.

ł

Ì

•

SAMPLE			<u></u>	1	<u> </u>			· · · · · · · · · · · · · · · · · · ·			
COLLECTION DATE	LAB #	As Arsenic	Be Bervllium	Cd	Cr	Pb Lead	Hg	Ni	Selenium	V	Zn
08/07/06	0608136-001A	51.0	<12	47.0	46.0	4000				vanadium	Zinc
08/08/06	0608136-0024	51.0	41.0	47.0	40.0	1000	3.30	140.0	1.20	34.0	4400
00/00/00	0000130-002A	51.0	<u><1.2</u>	54.0	51.0	1400	4.90	44.0	1.50	34.0	5300
08/09/06	0608136-003A	29.0	<1.3	34.0	38,0	630	4.00	30	0.95	33.0	3000
08/10/06	0608136-004A	40.0	<1.2	48.0	57.0	1900	2.90	130.0	1.20	45.0	4000
08/11/06	0608136-005A	35.0	<1.2	42.0	71.0	1100	1.30	45.0	0.75	60.0	4200
08/14/06	0608136-006A	44.0	<1.3	44.0	69.0	1000	3.00	85	1.20	54.0	4200
08/15/06	0608136-007A	33.0	<1.1	30.0	78.0	590	0.00	470	1.20	54.0	3900
08/16/06	0608136-008A	29.0	<12	21.0	20.0	000	0.29	170	0.67	90.0	3200
08/17/06	0609136 0004	20.0	-1.6	31.0	30.0	690	<0.12	56.0	0.67	38.0	4300
09/10/00	0000130-009A	32.0	<1.1	41.0	55.0	1100	<u><0.11</u>	43.0	0.76	40.0	7600
00/10/00	0608136-010A	27.0	<1.2	33.0	57.0	2800	2.60	78.0	0.80	45.0	3400
			<u> </u>								0400
AVERAGE		37.1	NA	40.4	55.8	1220 n	22	00.4	4.0		
STANDARD DEV	ATION	8.5	NΔ	77	12.0	044.0	<u> </u>	82.1	1.0	47.3	4330.0
COEFFICIENT OF	VARIATION	22.0%		1.1	13.2	044.6	1.6	46.0	0.3	16.5	1259.4
		44.370		19.1%	23.6%	52.8%	73.9%	56.0%	28.1%	35.0%	29.1%

SAMPLE			1	1					1	1	
COLLECTION	LAB	As	Be	Cď	Cr	Pb	Ha	N	Se	l v l	Zn
DATE	##	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercurv	Nickel	Selenium	Vanadium	Zinc
04/23/07	0704181-001A	<u>40</u> .0	<1.2	51.0	62.0	1300	8.90	79.0	<1.2	33.0	4700
04/23/07	0704181-002A	36.0	<1.2	64.0	51.0	1300	5.30	47.0	<1.2	20.0	5100
04/24/07	0704181-003A	39.0	<1.2	70.0	59.0	1600	7.20	45.0	<1.2	26.0	14000
04/24/07	0704181-004A	55.0	<1.3	120	74.0	1800	6.80	53.0	2 10	24.0	8400
04/25/07	0704181-005A	62.0	<1.4	130	75.0	2000	9.50	61.0	2.30	24.0	8300
04/25/07	0704181-006A	46.0	<1.3	79.0	81.0	1700	4.60	79.0	<1.3	27.0	6000
04/26/07	0704186-001A	53.0	<1.3	130	62.0	2100	7.70	73.0	1.70	23.0	8500
04/26/07	0704186-002A	45.0	<1.3	87.0	86.0	1700	4.90	174	1.30	26.0	7200
04/27/07	0704186-003A	44.0	<1.3	77.0	260	1300	9.10	110	<1.3	45.0	5200
04/27/07	0704186-004A	41.0	<1.2	53.0	93	1200	4.60	180	<1.0	36.0	4800
										00.0	4000
AVERAGE		46.1	NA	86.1	90.3	1600	6.9	90.1	19	28.4	7290

AVERAGE	46.1	NA	86.1	90.3	1600	6.9	90.1	1.9	28.4	7280
STANDARD DEVIATION	7.8	NA	28.7	57.9	300	1.8	47.1	0.4	7.1	2652
COEFFICIENT OF VARIATION	16.8%	NA	33.3%	64.1%	18.8%	26.7%	52.3%	20.8%	25.1%	36.4%

Analyses performed by Life Science Laboratories, Inc

-

SAMPLE			1					· · · · · · · · · · · · · · · · · · ·			
COLLECTION	LAB	As	Be	Cd	Cr	Pb	На	Ni	Se	v	75
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
08/09/07	0708082-001A	48.0	<1.2	48.0	65.0	2700	4.30	70.0	1.80	49.0	4000
08/10/07	0708082-002A	47.0	<1.2	36.0	330	990	2,90	290	2.60	40.0	4000
08/14/07	0708121-001A	44.0	<1.2	55.0	52.0	1100	5 20	110	2.00	45.0	4000
08/14/07	0708121-002A	45.0	<1.2	57.0	69.0	1400	6.40	51.0	2.00	37.0	4700
08/15/07	0708121-003A	39.0	<1.2	40.0	100	2500	2.00	180	2.70	40.0	5200
08/15/07	0708121-004A	65.0	<1.3	110	40.0	400	2.90	160	2.20	42.0	4100
08/16/07	0708121-0054	60.0		- 110	49.0	160	8.20	3/	2.30	33.0	7300
09/10/07	0700121-000A	00.0	<0.5	70.0	57.0	980	7.20	120	<6.5	<32	5300
00/10/07	0708121-006A	86.0	<u><1.4</u>	120	49.0	3400	12.00	36.0	2.70	31.0	9900
08/17/07	0708121-007A	48.0	<1.3	59.0	53.0	1300	5.80	40.0	2.20	44.0	0000
08/17/07	0708121-008A	74.0	<1.5	70.0	52.0	1400	7.40	40.0	2.30	41.0	5900
				79.0	1	1400	7.40	35.0	2.20	29.0	6600
AVERAGE		55.6	NA	67.4	96.7	1595	6.2	94.9	23	20.7	5500
STANDARD DEV	IATION	14.4	NA	26.8	87.7	Q1Q	26	70.0			0000
COEFFICIENT O	VARIATION	26.0%	NA	30 7%	00.79/	E7.00/	2.0	10.9	0.3	7.2	1505
				00.176	30.7%	51.0%	41.4%	81.0%	12.6%		26.9%

SAMPLE							1		1		
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Ha	NĒ	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
04/25/08	0805009-001A	73.0	<1.3	170.0	60.0	2300	13.00	34.0	1.50	35.0	9900
04/28/08	0805009-002A	91.0	<1.2	100.0	50.0	1600	6.50	62.0	1.80	26.0	7200
04/29/08	0805009-003A	54.0	<1.2	47.0	72.0	1100	3.00	200.0	<1.2	44.0	/700
04/29/08	0805009-004A	98.0	<1.4	120	85.0	2300	9.80	78.0	1 90	38.0	<u>9100</u>
04/30/08	0805021-001A	48,0	<1.3	61	88.0	1300	3 70	83.0	<1 3	40.0	4000
04/30/09	0805021-002A	80.0	<1.3	110.0	110.0	1500	12.00	36.0	2 00	32.0	7900
05/01/08	0805021-003A	47.0	<1.2	52	69.0	990	3 10	41.0	<12	44.0	4900
05/01/08	0805021-004A	95.0	<1.3	130.0	58.0	2000	9.40	33	2.60	25.0	10000
05/02/08	0805021-005A	38.0	<1.2	45.0	72	840	3.50	47	<12	30.0	6600
05/02/08	0805021-006A	72.0	<1.3	88.0	67	1500	6.20	46	1.70	53.0	8300
										00.0	
AVERAGE		69.6	NA	92.3	73.1	1543	70	66.0	10	29.5	7220
STANDARD DEV	20,6	NA	39.4	16.5	492	3.6	47.8	0.2	0.0	1075	
COEFFICIENT O	29.6%	NA	42.7%	22.5%	31.9%	51.3%	72.4%	17.9%	<u>0.8</u> 22.9%	25.0%	

72.4% 17.9%

22.9%

25.9%

Analyses performed by Life Science Laboratories, Inc

SAMPLE			1	I	T		l	r	T		
COLLECTION DATE	LAB #	As	Bendlium	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
12/10/09	0040047.0044		Derynlum	Caumium		Lead		Nickel	<u> Selenium</u>	Vanadium	Zinc
12/19/00	0812217-001A	33.0	<1.4	68.0	91.0	1400	11.00	59.0	1.50	28.0	5900
12/19/08	0812217-002A	26.0	<1.3	64.0	70	1900	7.80	77	1.50	22.0	4000
12/20/08	0812217-003A	35.0	<1.4	80.0	39.0	1100	8.30	72	2 10	24.0	4000
12/22/08	0812217-004A	31.0	<12	20.0	76.0	670	5,00	40.0	2.10		0000
12/23/08	0812217-0054	<227	407	20.0	10.0	0/0	0.90	48.0	<1.2	61.0	2900
10/00/00	0012217-000A		~21	60.0	190	1000	14.00	190	<27	57.0	4100
12/23/08	0812217-006A	27.0	<u><1.3</u>	34	56.0	1100	4.10	45	<1.3	32.0	2000
12/24/08	0812217-007A	24.0	<1.3	43.0	150.0	680	6.50	260	1.60	46.0	3000
12/29/08	0901008-001A	51.0	<1.3	89	58.0	3600	7.50	200	1.00	40.0	4000
12/30/08	0901008-002A	24.0	<13	65.0	55.0	4000	7.50	30.0	1.70	24.0	6400
12/30/08	0001008-0024	40.0	-1.0	00.0	55.0	1600	7.50	<u> </u>	1.50	18.0	4900
	0001000-000A	19.0	<1.3	48.0	58.0	1200	4.80	51.0	<1.3	30.0	3700
	·		······		·						
AVERAGE		30.0	<u>NA</u>	58.0	84.3	1425	77	87.2	4 7	04.0	·····
STANDARD DEVIATION		8.8	NA	18.4	45.7	910		07.5	<u> </u>	34.3	<u> 4630 </u>
COEFFICIENT OF VARIATION		20.20/	NIA NIA	04 70	- 40.7	010	2.8	71,8	0.2	14.3	1262
		20.070	IN/A	31.1%	54.2%	56.8%	35.9%	82.2%	13.0%	41.6%	27,3%

Sample			1		[1			·	
Collection	Lab	As	Be	Cd	Cr	Ph	На	NI .	6.		7
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	V Vapadium	
5/11/2009	0905077-001A	46	<1.2	39	87	1200	2.4				2//10
5/11/2009	0905077-002A	63	<13	70	04	1200	3.1	00	1.3	49	4500
5/12/2009	0905077-0034	80	<1.5	78	94	1300	3.8	46	5	42	5900
5/12/2000	0005077-0044	80	<1.2	88	73	1500	4.3	34	6.3	45	6800
5/12/2009	0905077-004A	100	<1.2	100	76	4600	6.9	120	6.6	33	8600
5/13/2009	0905106-001A	62	<1.2	68	76	1400	4.5	79	3	46	5800
5/13/2009	0905106-002A	49	<1.2	41	170	1200	2.4	210	1.4	68	5100
5/14/2009	0905106-003A	59	<1.3	74	66	1900	5.7	71	2.6	38	10000
5/14/2009	0905106-004A	48	<1.2	50	65	1200	3.3	67	2.1	42	5200
5/15/2009	0905106-005A	46	<1.2	63	71	2100	4	64	15	30	5200
5/15/2009	905106-006A	43	<1.2	42	72	930	2.2	95	<1.2	48	5100
						l					0100
Average		59.6	NA	64.3	84.5	1733.0	4.0	84.6	33	45.0	6220.0
Standard Deviation 18.1			NA	21.1	31.2	1066.3	14	60.2	2.1		0220.0
Coefficient of va	Coefficient of variation		NA	32.9%	36.9%	61 5%	25.0%	50.2	2.1	9.4	1/67.5
1.30 1.370 30.370 51.376							30.9%	59,4%	63.8%	21.0%	28.4%
Sample											
Collection	Lab	As	Be	Cd	Сг	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/16/2009	0910091-001A	36	<1.2	55	72	770	3.9	59	2.5	32	32,000
10/19/2009	0910091-002A	67	<1.3	110	51	2000	7.6	31	1.5	36	8400
10/20/2009	0910091-003A	44	<1.3	64	47	890	5.2	37	<1.3	29	5200
10/21/2009	0910091-004A	66	<1.3	120	55	1700	9.9	60	1.6	28	8000
10/21/2009	0910113-001A	55	<1.2	89	57	1500	3.2	38	1.3	43	6800
10/22/2009	0910113-002A	60	<1.3	120	48	1500	3.8	31	1.6	33	8200
10/22/2009	0910113-004A	30	<1.2	54	46	850	9.8	30	<1.2	38	4900
10/23/2009	0910113-005A	42	<1.2		95	1100	4.6	67	3	31	6200
10/23/2009	0910113-006A	54	<1.3	98	55	1300	11	51	3.3	23	7600
			<u> </u>	140	48	1900	11	44	3.7	20	10000
Average		49.7	ΝΑΙ	92.8	57.4	4054	·				
Standard Dev	viation	12.2	NA	29.9	15.3	1001		44.8	2.3	31.3	9730
Coefficient of	variation	24.6%	NA	32.2%	26.6%	32 70/	3.2	13.6	0.9	6.8	7976.1
				/U	20.070	JZ.170	40.0%	30.4%	40.4%	21.8%	82.0%

Sample]				
Collection	Lab	As	Be	Cd	Cr	Рb	На	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
5/24/2010	1006054-001A	55	<1.2	77	68	1300	4.1	58	23	47	6500
5/25/2010	1006054-002A	40	<1.2	52	57	780	29	52	13	41	4500
5/25/2010	1006054-003A	52	<1.2	87	57	1300	5	37	1.0	41	4500
5/26/2010	1006054-004A	28	· <1.1	41	40	940	20			20	7600
5/26/2010	1006054-006A	37	<1.3	62	59	1000	2.0	29	<1.1	32	3900
5/27/2010	1006054-007A	32	<1.2	46		610	4.Z	54	<1.3	44	5400
5/27/2010	1006054-008A	43	<1.2	71	40	4400	5.3	66	<1.2	31	3500
5/28/2010	1006054-0094	38	<1.3	20		1400	7.3	48	1.6	35	5200
5/28/2010	1006054-009A	30	<1.2	39	69	680	4.3	33	<1.2	65	4000
5/20/2010	1006054-010A	40	<1.2	55	69	890	4	57	<1.2	40	5300
5/25/2010	1000034-011A	04	<1.2	54	66	960	2.2	33	<1.2	40	4900
Ανοτοσο		10.5									
Average Observed Davis		43.5	NA	58.4	59.6	1076.0	4.2	46.7	1.8	40.1	5080.0
Standard Deviation		11.0	NA	15.8	10.1	396.2	1.5	12.8	0.4	10.8	1245.3
Coefficient of va	riation	25.3%	NA	27.0%	16.9%	36.8%	34,7%	27.4%	24.4%	27.0%	24.5%
					_						
Sample					·						
Collection	Lab	A a	р.								
Date		As	Be		Cr	РБ	Hg	Ni	Se	v	Zn
9/27/2010	1010020-001A	70		Caumium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
9/28/2010	1010020-007A	38	<1.2	02	100	1200	5.7	200	4.9	33	6,400
9/28/2010	1010020-003A	35	<1.2	93	100	830	3.3	46	2.2	50	5200
9/29/2010	1010020-004A	37	<1.3	93	45	1200	9	36	1.5	29	6000
9/29/2010	1010020-006A	58	<1.2	84	04	1000	5	91	1.6	39	5800
9/30/2010	1010020-007A	49	<1.2	04	70	1200	8	38	2.2	40	6500
9/30/2010	1010020-008A	61	<1.2	140	70 51	1800	4.9	63	2.9	32	6600
10/1/2010	1010020-009A	30	<1.3	48	08	1000	3.3	54	3	29	9000
10/1/2010	1010020-010A	35	<1.3	40	75	1100	3.5	85	1.5	70	4400
10/2/2010	1010020-011A	35	<1.3	73	- 10	1500	2.1	/2	1.8	60	4800
					00	1900	5.2	42	2.2	43	5500
Average		45.7	NA	82.4	72.2	1252.9	5 1	70 7			
Standard Dev	viation	15.7	NA	26.5	18.7	294.2	22	12.1	2.4	42.5	6020
Coefficient of	variation	34.4%	NA	32.2%	25,9%	23.5%	43.2%	40.7 67.0%	1.0	13.8	1277.8
						_0.070	-TU.2. /U	07.0%	43.4%	32.4%	21.2%

Sample												
Collection	Lab	As	Be	Cd	Cr	Pb	Нg	Ni	Se	V	Zn	
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc	
6/7/2011	K1106170-001A	62	0.46	68	69	1800	3.7	35	2.2	43	5800	
6/7/2011	K1106170-002A	61	0.44	100	66	1300	7.3	30	2.2	35	7000	
6/8/2011	K1106170-003A	54	0.48	63	66	1000	3	77	2	38	5800	
6/8/2011	K1106170-004A	65	0.41	100	74	2100	8.7	43	1.9	37	6900	
6/9/2011	K1106170-006A	46	0.4	72	59	1200	4.3	59	1.9	34	6200	
6/9/2011	K1106170-007A	51	0.43	75	57	860	4.9	39	2.8	37	6300	
6/10/2011	K1106170-008A	27	0.71	38	70	610	7.9	40	3.8	40	4000	
6/10/2011	K1106170-009A	44	0.54	67	67	1300	4.2	51	2.4	44	5500	
6/11/2011	K1106170-010A	34	0.59	46	67	1000	6	46	1.8	55	6200	
6/11/2011	K1106170-011A	42	0.46	66	62	1100	5.1	30	1.4	37	6100	
Average		48.6	0.5	69.5	65.7	1227.0	5.5	45.0	2.2	40.0	5980.0	
Standard Devia	tion	12.4	0.1	19.7	5.1	439.2	1.9	14.4	0.7	6.2	837.7	
Coefficient of va	ariation	25.6%	19.6%	28.4%	7.8%	35.8%	34.6%	32.0%	29.6%	15.4%	14.0%	
				· · · · · · · · · · · · · · · · · · ·								
Collection	Lah	A a	D.		<u>^</u>							
Date	LaD #	As	De Bendlium	Cadmium	Gr	PD	Hg Marouni	Ni Niekol	Se	V	Zn Zíra	
10/18/2011	K1110337-001A	45	0.36	84	58	1200	Nercury 5.2	NICKEI 44		Vanadium		
10/18/2011	K1110337-002A	46	0.66	330	130	2200	63	30	1.0	42	6100	
10/19/2011	K1110337-003A	40	0.5	59	74	1100	3	63	1.0	40	0010	
10/19/2011	K1110337-004A	48	0.55	77	82	1200	5.8	50	27	48	6700	
10/20/2011	K1110337-006A	53	0.47	120	80	1600	17	58	2.5	38	9400	
10/20/2011	K1110337-007A	37	0.41	91	68	1300	14	43	2	41	6700	
10/21/2011	K1110337-008A	31	0.36	69	57	990	6	32	4.5	31	7000	
10/21/2011	K1110337-009A	47	0.56	120	65	2000	9.5	35	3.6	41	7800	
10/26/2011	K1110337-010A	31	0.63	43	71	830	3.9	55	1.5	40	4900	
10/26/2011	K1110337-011A	55	0.34	96	53	1200	4.7	35	2.3	40	6900	
	2.0 40 8900											
Average								·				
Average	de la companya de la	43.3	0.45	108.9	73.8	1362	7.54	45.4	2.5	41.1	6910	
Average Standard Dev	viation	43.3 8.4	0.45	108.9 81.4	73.8 22.0	1362 439.5	7.54 4.6	45.4 10.7	2.5 0.9	4 <u>1.1</u> 4.8	6910 1425.5	

Sample Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
6/12/2012	K1206354-011A	120.0	0.6	67.0	110.0	770.0	3.8	93.0	1.6	37.0	4900
6/12/2012	K1206354-012A	90.0	0.5	64.0	78.0	790.0	6.4	35.0	0.8	40.0	4400
6/13/2012	K1206354-013A	110.0	0.6	80.0	100.0	1500.0	4.6	46.0	1.2	35.0	5200
6/13/2012	K1206354-014A	76.0	0.6	57.0	84.0	530.0	3.1	53.0	1.1	36.0	4300
6/20/2012	K1206354-015A	56.0	1.4	39.0	57.0	1100.0	0.5	49.0	1.0	35.0	3700
6/14/2012	K1206354-016A	71.0	0.5	79.0	71.0	1600.0	6.3	31.0	2.1	34.0	4800
6/15/2012	K1206354-017A	56.0	0.7	32.0	94.0	2400.0	3.1	64.0	1.1	55.0	4100
6/15/2012	K1206354-018A	87.0	0.5	73.0	75.0	530.0	6.4	35.0	2.1	42.0	6200
6/19/2012	K1206354-019A	98.0	0.5	72.0	74.0	1700.0	4.2	33.0	1.8	37.0	6300
6/19/2012	K1206354-020A	87.0	0.5	57.0	230.0	1600.0	3.3	98.0	1.3	33.0	9400
								L			
Average		85.1	0.6	62.0	97.3	1252.0	4.2	53.7	1.4	38.4	5330.0
Standard Dev	riation	21.1	0.3	16.1	49.1	608.6	1.9	24.4	0.5	6.4	1661.4
Coefficient of	variation	24.8%	43.1%	26.0%	50.5%	48.6%	44.9%	45.4%	35.6%	16.8%	31.2%
Sample Collection	Lab	40	Pa	64	<u>.</u>	Dh	Цn	NIS	80	V	7n
Date	Lab #	As	Beryllium	Cadmium	Chromium	P0 Lead	ng Mercury	Nickel	Selenium	v Vanadium	Zinc
9/25/2012	k1210235-011A	87	0.5	64	66	1300	3.2	60	0.85	37	6600
9/26/2012	K1210235-012A	40	0.48	38	63	650	2.5	49	3.6	33	3800
9/27/2012	K1210235-013A	48	0.5	42	57	590	2	84	0.62	47	4200
10/2/2012	K1210235-014A	55	0.53	79	71	2100	5.6	39	0.68	41	6800
10/2/2012	K1210235-015A	55	0.46	73	66	880	3.7	40	1.9	31	8600
10/3/2012	K1210235-016A	59	0.54	83	65	1600	5.9	38	1.5	36	6500
10/4/2012	K1210235-017A	60	0.63	78	91	1300	4.6	100	0.8	42	6300
10/5/2012	K1210235-018A	54	0.5	60	66	1300	1.8	120	0.75	38	21000
10/5/2012	K1210235-019A	88	0.53	84	72	1400	8.7	71	1.6	46	7100
10/6/2012	K1210235-020A	43	0.44	44	68	600	5.2	43	0.64	39	4100
A		50.0	0.544	045	00.5	4470	4.00		4 004		
Average Standard D	oviation	58.9 16.4	0.511	04.5 17.0	00.0	1172	4.32	04.4	1.294	<u>39</u>	7500
	of variation	10.4	U. I 10.2%	17.0	0.9	490.9	40.3%	20.1	0.9 72.0%	0.Z	4983.3
Coemcient		21.070	10.270	21.070	13.0%	41.970	49.370	44.070	12.070	13.270	00.4 %

VII.A. Mean Values Ash Data Dry Weight

VII.B. Mean Values Ash Data Dry Weight

VII.C. Mean Values Ash Data Dry Weight

			<u> </u>					
Site		Cadmium		Hg Horau	<u>Ni</u>	<u>Pb</u>	Se	Zn
Hempstead	17.2	20.5	72.4			Lead	Selenium	Zinc
Hempstead	17.4	20.0	12.1	10.9	14100	12/0	0.82	2440
Hemostead	15.9	310	40	16.9	40	1480	1.7	3020
Oneida Co.	13.6	16.4	40.0	0.42	49	1620		2440
Oneida Co	10.0	15.6	132	0.13	193	369	<1.2	1350
Oneida Co	77	17.0	90.0	<0.13	159	5/1	<1.3	1270
Westchester	12.6	31.0	40.0	0.22	211	1110	<1.3	1610
Westchester	18.4	32.3	49.9	1.9	54	3180	<1.2	2410
Westchester	13.3	20.1	<u> </u>	1.7	49	2570	<1.3	2520
Dutchess Co	15.7	120	42.5	4	41	2030	<1.2	2250
Dutchess Co.	12.6	43.3	42.5	10.4	00	1400	1.6	3530
Dutchess Co.	14.3	39.6	30.2	21	90	1490	14	3080
Babylon	14.5	35.0	 	0.0	04	1100	1.0	2820
Babylon	17.7	37.4	67.5	9,0	00 201	1090	1.4	3360
Babylon	14.6	31.5	66.6	0.8	291	044	1.2	3760
Islip	15.3	32.2	52	12	111	1490	1.4	3580
Islip	20.4	39.5	62.8	21.5	338	1710	<u> </u>	4870
Islip	12.6	32.6	57.8	20.6	206	1670	<1.2	12900
Dutchess Co.	30.0	42.1	89.6	24.3	200	1610	-7.10	- 0090
Dutchess Co.	28.2	36.6	30.6	23.2	42	1270	-7.10	3940
Dutchess Co.	34.3	41.2	35.3	24	71	1820	<7.1	3030
Babylon	34.6	82.6	6530	65	3880	2060	<12.2	<u>- 3010</u>
Babylon	39.1	90.9	69.7	11.4	160	4680	<u> </u>	12900
Babylon	31.5	72.8	87.8	11.9	250	3400	~12.1	13000
Westchester	14.9	27.3	24.3	0.75	28.5	1040	- 12.1	2240
Westchester	14.0	23.4	38.3	0.79	33.6	1050	<5.8	1060
Westchester	16,2	17.3	20.8	0.87	19.8	828	<5.8	1600
Hempstead	22.6	17.5	19	17.6	20.5	481	12	1120
Hempstead	32.6	30.7	202	17.4	166	686	- 1.2	1950
Hempstead	23.5	32.7	24.9	13	28.4	898	12.3	2630
Oneida Co.	9.7	7.7	49	0.65	141	987	12.0	2050
Oneida Co.	13.0	9.1	68.2	0.62	156	2720	4.2	1450
Oneida Co.	31.6	9.5	111	0.95	314	1060	- 4 ,0 20.0	1640
		L		0.00	014	1000	5.9	1040
Average	19.1	33.6	259	10.9	658	1558	2.66	3666
Standard Deviation	8.3	18.3	1109	8.7	2463	934	3.00	2088
Coefficient. of Variation	43%	55%	428%	80%	374%	60%	113%	81%
							71070	0170

New York State DEC Ash Residue Characterization Project March 1992 Summary of "Combined" (Fly and Bottom) Ash Results All Results in ug/g (ppm)

Onondaga County Health Department

Division of Environmental Health 421 Montgomery Street Syracuse, New York 13202

Incinerator Monitoring Program

2012 Screening Summary for Organic Constituents

June 1, 2013

Submitted To: Cynthia B. Morrow, M.D., M.P.H. Commissioner of Health

Submitted By: Kevin L. Zimmerman Director, Division of Environmental Health

Contents:

- I. Table of Abbreviations.
- II. Executive Summary.
- III. Introduction.
- IV. PCDD/PCDF Specific Discussion.
- V. PCB Specific Discussion.
- VI. PAH Specific Discussion.
- VII. Summary and Conclusions.
- VIII. Routine Soil Sample Site Location Map.

List of Tables

Table 1:	PCDD/PCDF Results; Control and Routine Site Soils
Table 2:	PCDD/PCDF Results; WTE Facility Combined Ash
Table 3:	PCB Results; Control and Routine Site Soils
Table 4:	PCB Results; WTE Facility Combined Ash
Table 5:	PAH Results; Control and Routine Site Soils
Table 6:	PAH Results; WTE Facility Combined Ash
Attachment A:	Historical PCDD/PCDF Results
Attachment Di	Historical BCB Basulta

- Attachment B: Historical PCB Results
- Attachment C: PAH Background Soil Concentrations

I.

Table of AbbreviationsThe following abbreviations may be used in this report:

ATSDR	Agency for Toxic Substances and Disease Registry.
PCDD/PCDF	Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans.
PCB	Polychlorinated Biphenyls.
PAH	Polycyclic Aromatic Hydrocarbons.
μg/g	micrograms per gram (also denoted as ug/g).
ng/g	nanograms per gram.
ng/kg	nanograms per kilogram (pg/g equivalent).
pg/g	picograms per gram (ng/kg equivalent).
LD	Limit of Detection.
NS	Not sampled.
ND	Not detected.
OCHD	Onondaga County Health Department.
WTE	Waste to Energy.
~	approximately.
<	Less than.
>	Greater than.

II. Executive Summary

Organic sample analyses for the year 2012 of soil and ash for the Incinerator Monitoring Program have been conducted by Axys Analytical Services LTD. Analyses for this summary include PCDD/PCDF, PCB and PAH. Ash collection was conducted by Covanta Energy personnel (formerly Odgen Martin), with random oversight by the Onondaga County Health Department's Division of Environmental Health. The collection of all ambient environmental samples was, and continues to be, the responsibility of the Division of Environmental Health. Final sample composites were prepared by Life Science Laboratories, Inc. (formerly O'Brien and Gere Environmental Laboratory).

Much of the comparative background data and information referenced in this report was obtained from NYDEC Soil Cleanup Objectives, EPA Preliminary Remediation Goals and Soil Screening Levels, along with the U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry's Toxilogical Profiles.

The analyses for organics completed during this monitoring period show the parameters are within the expected range for urban and rural environments. The results are below levels associated with health risk. The 2012 sampling revealed levels typical of historical data at all sites. Given the low levels detected and the corresponding variation expected as a result of sample collection, preparation, and laboratory procedures, the levels that have been determined do not allow for comparison to establish change in the environment. In the organic monitoring conducted to date, no relationship between the operation of the incinerator and increased levels of organics has been established.

III. Introduction.

In November 1994, the Onondaga County Resource Recovery Agency, in contract with the Covanta Energy Company (formerly Ogden Martin Company), commenced operation of a municipal solid waste incinerator. This undertaking was part of a multifaceted solid waste management program to achieve a reduction of volume of landfill waste, energy withdrawal and the removal of solids incompatible with incineration. Part of the management program for the reuse of materials and the removal of materials prior to the municipal waste stream had been started earlier.

The Onondaga County Health Department initiated a program in 1993 to include short and long term monitoring aspects to document any health implications to the public and environmental changes from the incinerator. Changes have been made to the monitoring program several times over the course of time in response to new information as it became available. In 2003 the monitoring program was re-evaluated to provide a more effective and efficient program. Direct interaction was established with the Onondaga County Resource Recovery Agency (OCCRA) and the New York State Department of Environmental Conservation (DEC) in providing stack monitoring results and improved assurance on reporting of adverse events and equipment failures. This allowed for effective evaluation of short-term change in the incinerator emissions rather than the previous limited scope offsite air monitoring conducted over a nine year period. Several changes were implemented in 2009 based on the low levels of organic constituents detected in the monitoring conducted to date, and the fact that there is no evidence of a trend or levels associated with health risks. The fourteen routine soil sites (which include two control sites) continue to be sampled and analyzed twice a year for metals which are documented in a separate report. Half of the sites (7, including one control) are being tested for organics once a year. The sites will be rotated so that each is tested every other year. The program includes the flexibility to test a site two years in a row if there is an elevated level of any organic constituent. The four ash route soil sites have been eliminated from the program. These sites were located along the route that trucks take to carry ash across and out of the County. To date these sites have not shown any elevation of metals or organics and the trucks are covered at all times. Ash, directly from the incinerator continues to be analyzed for metals twice a year and organics once a year. The department continues to interact directly with OCCRA and DEC in review of stack monitoring results.

This is the thirteenth report for screening of organics, analyzed for dioxin, dibenzofurans, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, from samples of ambient soil and combined ash collected from the incinerator operation. The analysis of soil samples provides a useful and convenient mechanism for monitoring accumulative change of these organics in the environment. Surface soil samples can be utilized to monitor deposition of transient materials that can drop from atmospheric particulate materials, materials spilled in the area and materials spread on the land for agricultural purposes.

A program designed to monitor soil samples collected on a routine basis will provide an assessment of the organic material deposited in the sample area. The limitation of this matrix is that there are numerous sources and a normal action by nature is occurring on the soil at all times. The results reported should be utilized with other reports for studies in other areas. The soil sample analyses described in this report are part of an ongoing program of environmental monitoring performed by the Onondaga County Health Department as part of its overall Incinerator Monitoring Program.

This report represents data from the screening of soil and ash collected during the calendar year 2012. This is the eighteenth year of operation of the WTE facility. Three samples were collected at each soil location during each sampling event. Ash sampling is conducted by Covanta Energy personnel during their semi-annual collection. Through the sampling year 2002, it was the responsibility of the Onondaga County Health Department Environmental Toxicology Laboratory to create the soil and ash composites. Beginning with 2004, the contract laboratory, Life Science Laboratories, Inc. (formerly O'Brien and Gere Environmental Laboratories) created one composite sample for each organic analysis of soil and a two-day and three-day composite of the ash for analysis.

IV. PCDD/PCDF Specific Summary.

PCDDs are a class of chlorinated tricyclic aromatic hydrocarbons. There are 75 chlorinated dioxins, all varying in toxicity. Generally, the PCDD congeners of relative toxic concern are 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD and 1,2,3,4,6,7,8-HpCDD. PCDFs are also a class of chlorinated tricyclic aromatic hydrocarbons. There are 135 chlorinated furans, of which, approximately 10 to 12 are expected to have significant acute toxicity. The most acutely toxic isomers appear to be 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF and 2,3,4,7,8-PeCDF. Each sample was tested for seventeen different congeners of PCDD/PCDF.

Each congener of PCDD/DF has associated with it a toxic equivalency factor, TEF. This factor is an indication of the toxicity of the individual congeners with respect to 2,3,7,8 TCDD, the most toxic congener. Each sample has a calculated total toxic equivalency, TEQ, shown in Tables 1 and 2. While the toxic equivalency is the main consideration for the determination of change, individual congener concentrations have also been reviewed for significance.

Table 1 displays the results of soil analyses for dioxin and dibenzofurans at the six routine sampling sites and one control site for the spring sampling period of year 2012. In general, the set of TEQ results from these samples confirmed very well the results that were presented in the previously issued "Screening Summary for Organic Constituents" reports (Refer to Attachment A). Results from both the routine sites and the control site demonstrate no distinct pattern from background through year 2012 sampling. The TEQ's for 2012 are well below the screening level of 50 pg/g used by ATSDR and the EPA preliminary remediation goal of 1000 pg/g. The levels as reported are not of health significance and are within expected levels as stated in other documents for background levels in soil.

Table 2 displays the analyses for ash from the incinerator. The TEQ result for the ash composite for day 1 & 2 and day 3-5 are consistent with previous results. Ash is not homogenous and can contain chunks of material which may account for an occasionally inconsistent result. These results are similar to reports for ash identified by other investigators and reported in published literature. All of the ash is transported in closed vehicles and buried at a Department of Environmental Conservation permitted

landfill.

Attachment A shows the historical TEQ values for routine soil sites, control sites, and ash samples.

V. PCB Specific Summary.

Polychlorinated biphenyls, PCB's, are a class of more than 200 man-made chemical compounds. PCB's were widely used in industrial applications due to the physical characteristics of the compounds. Incineration of PCB containing products can lead to a release of PCB's into the environment. Soil sampling is a strong indicator of PCB levels in the environment because of the persistence and adhesion capabilities of the substance. PCB analysis in the past had resulted in less than detectable concentrations. Axys Analytical Services, LTD lowered the limit of detection for PCB starting in 2000 so that usable concentrations are now being presented. The ATSDR Toxicological Profile for PCB (1996) indicates that typical mean PCB concentrations in background soil are <100 μ g/kg (<100,000 pg/g). The NYSDEC has a Soil Cleanup Objective of 100,000 pg/g for PCB's and the EPA has a soil screening level of 240,000 pg/g for residential soil.

PCB results are presented in Tables 3 and 4. Table 3 displays results for the six routine sites within the impact area of the WTE Facility along with a control site. The mean PCB concentration for routine sites was 4,255 pg/g, with a maximum concentration of 17,400 pg/g at the Syracuse University site. In general, PCB results in this study are well below the ATSDR typical background soil level of 100,000 pg/g. Soil is not homogenous and can contain materials that can account for an occasional inconsistent result. Attachment B shows historical levels of PCB's at routine soil sites along with control sites.

Table 4 displays the results of PCB analyses of ash as collected from the WTE Facility. At 1,800 and 20,500 pg/g, the PCB levels for the year 2012 sampling are lower than the previously stated ATSDR typical background soil level.

VI. PAH Specific Summary.

Polycyclic aromatic hydrocarbons, PAH's, are primarily formed as the result of incomplete combustion of organic matter. PAH's, like PCB's, have a strong persistence and affinity to particulate matter. For this reason, soil and ash sampling are quality measures of the levels attributable to incineration. As with the PCB analyses, Axys Analytical Services, LTD has lowered the limit of detection for PAH congeners for this report so that additional usable concentrations are now being presented.

PAH results for soil are presented in Table 5. Attachment C presents NYSDEC Soil Cleanup Objectives, EPA screening levels, NYS Rural soil survey results, and Toxicological Profile levels for PAH's for rural, agricultural and urban soils. These levels can vary widely for the individual PAH's. The levels reported in the 2012 study are generally within these expected ambient levels.

PAH results for the WTE ash composites are presented in Table 6. Comparison

of the 2012 composite ash results to the averages for years 1999 through 2011 individual results exhibits little variation in PAH congener specific concentrations.

VII. Summary and Conclusions

This screening represents the organic analysis data for calendar year 2012 environmental soil and ash samples. PCDD, PCDF, PCB and PAH levels are all quality indicators of ambient conditions in the environment. By following the concentrations and trends of these compounds, two objectives are accomplished. First, ambient conditions are monitored for changes due to point sources. Second, health risks can be established for the effect of the soil concentrations.

The reported concentrations of all organic compounds in this screening are within expected levels and are below significant health risk levels. In general, little change in levels of these compounds have been observed from background through the present organic screening period.

The Onondaga County Health Department will continue to monitor soil and ash for organic compounds.

Control Site Routine Sites Dutch Hill **Clark Reservation** Jamesville Beach Nob Hill Sentinel Heights Syracuse University J.D. High School 15-May-12 15-May-12 15-May-12 15-May-12 15-May-12 15-May-12 15-May-12 Accession Number: L18216-5 L18216-7 L18216-6 L18216-1 L18216-2 L18216-4 L18216-3 PCDD / PCDF TEF 2,3,7,8-TCDD K 0.135 0.205 K 0.075 0.095 0.612 K 0.148 K 0.176 1,2,3,7,8-PeCDD 0.5 0.456 0.496 0.184 0.252 4.31 0.565 0.306 1,2,3,4,7,8-HxCDD K 0.650 0.559 0.1 0.216 0.288 7.85 0.797 0.308 1,2,3,6,7,8-HxCDD 0.1 1.16 0.445 0.565 16.3 1.41 0.62 1 . 1.2.3.7.8.9-HxCDD 0.1 1.82 1.26 0.513 0.676 21.4 2.21 0.787 1,2,3,4,6,7,8-HpCDD 0.01 13.9 19.5 7.94 10 385 23.5 11.7 OCDD 0.001 64.1 43.1 67.4 2500 150 114 66 2,3,7,8-TCDF 0.1 1.76 1.47 0.47 0.679 0.667 0.989 0.776 1,2,3,7,8-PeCDF 0.05 0.653 0.515 K 0.217 0.243 0.722 0.281 0.339 2,3,4,7,8-PeCDF 0.5 1.56 0.613 K 0.246 0.343 0.68 0.411 0.408 1,2,3,4,7,8-HxCDF 0.1 2.19 0.937 0.398 0.488 4.15 0.769 0.682 1,2,3,6,7,8-HxCDF 0,1 1.93 0.733 0.233 0.336 2.95 0.676 0.467 1,2,3,7,8,9-HxCDF 0.1 0.107 K 0.085 < 0.0493 < 0.0488 0.189 < 0.0483 < 0.0498 2.3.4.6.7.8-HxCDF 0.1 0.293 0.381 0.475 0.442 3.15 0.709 2.12 1,2,3,4,6,7,8-HpCDF 0.01 11.2 5.97 3.03 73.4 5.33 4.07 3.41 1,2,3,4,7,8,9-HpCDF 0.01 0.649 0.48 0.288 0.333 4.6 0.381 0.348 OCDF 0.001 5.43 8.14 6.22 4.53 166 7.8 5.21 Total TEQ 2.47 1.75 0.488 0.488 16 1.63 0.951 Total Tetra-Dioxins 1.41 3.42 0.984 1.78 1.37 4.15 1.3 Total Penta-Dioxins 18.2 2.95 2.72 5.84 4.48 1.39 1.24 Total Hexa-Dioxins 13 10.7 4.62 5.72 157 15 5.77 Total Hepta-Dioxins 27.9 37.8 14.4 19.1 808 48.5 22.6 Total Tetra-Furans 3.72 8.66 11.3 2.49 5.82 7.06 5.3 Total Penta-Furans 16.2 8.32 1.89 3.26 14.6 5.69 4.97 Total Hexa-Furans 23 9.24 3.82 4.88 76.3 7.94 6.08 Total Hepta-Furans 17 11.3 7.44 5.78 226 10.4 7.25

ł

.

Results reported in pg/g (ng/kg equivalent) dry weight.

Comparison Values	
EPA Action Level	1,000 ng/kg (Total TEQ)
ATSDR EMEG Value	50 ng/kg (Total TEQ)

Table 1

Tabl	e	2
------	---	---

		Combined Ash						
		Spring Day 1 & 2	2012 Day 3 - 5					
Accession Number:		L18216-8	L18216-9					
PCDD / PCDF	TEF							
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	1 0.5 0.1 0.01 0.001 0.001 0.1 0.1 0.1 0.01 0.01 0.001	14.2 30.6 16.9 25.3 39.6 184 527 210 94.2 76.4 88.3 91 7.62 50.5 203 26.1 109	14.7 33.3 21.4 35.3 53.1 276 786 224 96.7 83.2 80.9 94.7 8.25 62.4 238 29.7 108					
Total TEQ		116	127					
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans		216 277 312 386 1780 1280 749 312	221 300 401 576 1850 1340 805 364					

Results reported in pg/g dry weight.

	Control Site		Routine Sites							
	Dutch Hill	Clark Reservation	Jamesville Beach	Nob Hilf	Sentinel Heights	Syracuse University	J-D High School			
	15-May-12	15-May-12	15-May-12	15-May-12	15-May-12	15-May-12	15-May-12			
Accession Number:	L18216-5	L18216-7	L18216-6	L18216-2	L18216-3	L18216-5	L18216-3			
РСВ										
Total Monochloro Biphenlys	1.09	7.43	1.53	1.92	1.74	9.36	2.48			
Total Dichloro Biphenyls	4	14.8	3.99	9.99	4.48	59.5	9.51			
Total Trichloro Biphenyls	15.3	42.4	9.97	18,9	14.2	208	· 26.8			
Total Tetrachloro Biphenyls	106	146	29.5	66.2	63.2	490	87.8			
Total Pentachloro Biphenyls	207	467	122	300	254	1610	261			
Total Hexachloro Biphenyls	741	850	246	657	418	6410	452			
Total Heptachloro Biphenyls	811	785	163	461	307	6470	373			
Total Octachloro Biphenyls	368	402	94.8	216	148	1920	178			
Total Nonachloro Biphenyls	72.3	127	27.2	64.4	36.2	177	49			
Decachloro Biphenyl	26.6	43.2	8.95	26.4	14.1	21.5	12.9			
Total PCB'S	2350	2890	707	1820	1260	17400	1450			

Results reported in pg/g dry weight.

Comparison Value	
ATSDR Typical Mean Background Value	e < 100,000 pg/g

	Combined Ash						
	Spring	g 2012					
	Day 1 & 2	Day 3 - 5					
Accession Number:	L18216-8	L18216-9					
РСВ							
Total Monochloro Biphenlys	122	183					
Total Dichloro Biphenyls	143	4260					
Total Trichloro Biphenyls	240	6920					
Total Tetrachloro Biphenyls	334	5660					
Total Pentachloro Biphenyls	419	1600					
Total Hexachloro Biphenyls	255	865					
Total Heptachloro Biphenyls	161	662					
Total Octachloro Biphenyls	72.7	298					
Total Nonachloro Biphenyls	29.7	53.8					
Decachloro Biphenyl	20.2	27.1					
Total PCB'S	1800	20500					

Results reported in pg/g dry weight.

	Control Site		Routine Sites								
	Dutch Hill	Clark Reservation	Jamesville Beach	Nob Hill	Sentinel Heights	Syracuse University	J.D. High School				
	15-May-13	15-May-12	15-May-12	15-May-12	15-May-12	15-May-12	15-May-12				
Accession Number:	L18216-5	L18216-7	L18216-6	L18216-1	L18216-2	L18216-4	L18216-3				
РАН											
Naphthalene	2.52	14.4	3.35	4.17	13.7	4.24	3.99				
Acenaphthylene	2.13	47.5	3.02	9.42	43.6	5.54	6.6				
Acenapthene	0.888	9.4	0.938	3.16	3.48	1.75	1.97				
Fluorene	0.509	8.47	0.45	2.63	1.8	2.41	0.9				
Phenanthrene	11.6	217	8.82	64.1	42.9	33	25				
Anthracene	2	40	1.86	11.5	27.3	6.48	6.4				
Fluoranthene	20.2	379	15.7	156	119	68.7	60.7				
Pyrene	17.8	331	14.1	135	129	58.6	53.7				
Benzo(A)Anthracene	7.1	134	6.24	50.2	73.9	24	27.6				
Chrysene	12.5	212	10.9	76.3	110	41.5	40.3				
Benzo(B,J,K)Fluoranthene	20	339	18.9	119	213	62.8	70.2				
Benzo(E)Pyrene	8.33	132	7.78	48	91.7	25.2	26.3				
Benzo(A)Pyrene	14.6	176	10.8	65.9	133	31.2	39.6				
Perylene	1.88	32.4	1.56	14.4	27.7	6.71	7.91				
Dibenzo(A,H)Anthracene	K 1.73	27.8	K 1.64	10.2	20.3	5.41	6.54				
Indeno(1,2,3-CD)Pyrene	9.24	132	7.98	48.4	95.9	23.9	27.8				
Benzo(G,H,I)Perylene	8.4	121	7.93	45.1	94.6	23.4	27.8				
2-Methylnaphthalene	2.45	14.8	3.51	3.91	7.12	5.25	3.38				
2-Chloronaphthalene				0.06		0.062					

ì

...

Results reported in ng/g dry weight.

	Combined Ash							
	Spring	g 2012						
	Day 1 & 2	Day 3 - 5						
Accession Number:	L18216-8	L18612-9						
РАН								
Naphthalene	71.3	107						
Acenaphthylene	24.7	29.7						
Acenapthene	220	328						
Fluorene	101	63.1						
Phenanthrene	131	382						
Anthracene	27.6	71.9						
Fluoranthene	135	408						
Pyrene	107	374						
Benzo(A)Anthracene	51.9	190						
Chrysene	60.9	215						
Benzo(B,J,K)Fluoranthene	90.1	335						
Benzo(E)Pyrene	272	240						
Benzo(A)Pyrene	61.2	227						
Perylene	14.1	64.7						
Dibenzo(A,H)Anthracene	7.55	34.5						
Indeno(1,2,3-CD)Pyrene	34.6	160						
Benzo(G,H,I)Perylene	33.8	163						
2-Methylnaphthalene	23.2	37.7						
2-Chloronaphthalene	0.857	0.797						

Results reported in ng/g dry weight.

Dioxin/Furnan TEQ Soil Results through Year 2012 (pg/g dry weight)

Routine Soil Sites

Site						Year								
	1994	1999	2000	2001	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012
Clark Reservation	1.8	1.2	2.27	1.42	1.23	2.03	1.90	1.76	1.73	1.26	***	1.64	***	1.75
Jamesville Beach	0.6	0.5	1.09	0.82	0.70	0.71	0.97	0.86	0.93	0.77	***	0.52	***	0.488
OCCF	0.79	2.2	1.68	1.47	1.26	1.38	5.54	1.52	1.94	1331.72@	1.72	***	2.13	***
DOT @ Jaquith	2		1.5	1.64	3.41	2.41	3.78	3.38	1.73	39.90@	2.62	***	3.95	***
Dutch Hill *	0.77		1.41	1.16	1.40	1.03	1.26	1.02	1.02	0.64	***	0.73	***	2.44
Erie - Poolsbrook*	1.39		1.5	1.14	1.86	**	**	**	**	**	**	**	**	**
Nottingham	0.51		0.78	0.79	0.80	0.70	0.94	0.85	0.84	0.74	0.76	***	0.43	***
SHFD	12		8.02	9.89	9.72	7.02	8.09	6.27	7.20	10.74	***	7.12	***	16
Sevier Rd	1.8		2.07	2.58	2.56	**	**	**	**	**	**	**	**	**
Beaver Lake *			0.51	0.53	0.85	0.70	0.72	0.64	0.69	0.65	0.38	***	0.5	***
Ch. 3 Towers			3.36	3.88	3.35	9.66	7.79	7.69	5.39	2.44	3.72	***	0.45	***
Gen.Crushed Stone			2.77	1.98	2.13	**	**	**	**	**	**	**	**	**
Highland Forest			1.18	1.24	0.96	**	**	**	**	**	**	**	**	**
JD High School			1.32	1.29	1.12	1.10	1.48	1.16	1.06	1.28	***	1.13	***	0.951
Nob Hill			0.93	0.91	0.90	6.83	1.01	1.00	1.07	1.05	***	0.78	***	0.488
Pratts Falls			0.91	0.98	0.77	0.87	0.98	0.83	0.94	1.17	0.82	***	0.94	***
Southwood			0.6	1.14	1.01	1.08	1.05	0.97	1.09	1.01	0.80	***	0.93	***
Syracuse University			3.11	6.97	9.47	13.89	3.14	3.66	12.96	0.67	***	2.45	***	1.63

* Denotes Control Sites

"Site to fourger sampled due to program re-evaluation
"*" Site not sampled this year. Sites are sampled every other year.
@ A single elevated value will not be assumed to be indicative of a change at a specific site, rather a pattern of values must demonstrate a statistically significant difference.

Combined Ash

Site	Year													
	1999-Spring	1999-Fall	2000-Fall	2001-Fall	2002-Fall	2004-Spring	2005-Spring	2006-Spring	2007-Spring	2008-Spring	2009-Spring	2010-Spring	2011-Spring	2012-Spring
Day 1 and 2	256	153	109	123	177	72	191	246	250	243	168	200	197	116
Day 3, 4, and 5	242	205	154	137	220	445	142	148	276	240	126	172	129	127

1

Note: For reference purposes, the ATSDR investigation level for Dioxin/Furan TEQ is 50 pg/g and the EPA clean up level is 1,000 pg/g.

Attachment B

PCB Results through Year 2012 (pg/g dry weight)

Routine Soil Sites

Site												
	2000	2001	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012
Clark Reservation	6010	2360	3150	2780	3610	2770	4110	2640	***	2960	***	2980
Jamesville Beach	1260	644	683	703	1110	781	1220	1610	***	589	***	707
OCCF	3080	5230	2000	2310	6940	3120	6320	2190	2810	***	2650	***
DOT @ Jaquith	16100	15400	45100	9220	67100	49100	18000	14200	34700	***	31800	***
Dutch Hill *	2210	1170	1400	1200	1380	1140	1450	1340	***	1060	***	2350
Erie - Poolsbrook *	2620	1400	2020	**	**	**	**	**	**	**	**	**
Nottingham	2140	2280	3610	1640	7380	2850	3050	2110	4200	***	2020	***
SHFD	3080	2970	1760	1900	2730	1610	2510	1730	***	2240	***	1260
Sevier Rd	1870	1600	2250	**	**	**	**	**	**	**	**	**
Beaver Lake *	1970	1210	5250	2650	1420	1360	1360	1370	2450	***	1110	***
Ch. 3 Towers	3360	2310	2490	1620	1830	1730	2220	1400	1510	***	723	***
General Crushed Stone	9430	3160	5450	**	**	**	**	**	**	**	**	**
Highland Forest	2120	1210	1270	**	**	**	**	**	**	**	**	**
JD High School	3580	1780	1732	1810	2640	1780	1720	2720	***	1750	***	1450
Nob Hill	3500	2480	2500	3440	2810	2970	2830	2950	***	2510	***	1820
Pratts Falls	1890	1840	1440	1620	1650	1220	1450	2050	1230	***	1910	***
Southwood	2240	2160	1150	1480	1470	1470	2750	1640	1640	***	1120	***
Syracuse University	10700	114000	11000	9510	6940	11400	10900	1170	***	78600	***	17400

* Denotes Control Sites

** Site no longer sampled due to program re-evaluation *** Site not sampled this year. Sites are sampled every other year.

Combined Ash

Site												
	2000-Fall	2001-Fall	2002-Fall	2004-Spring	2005-Spring	2006-Spring	2007-Spring	2008-Spring	2009-Spring	2010-Spring	2011-Spring	2012-Spring
Day 1 and 2	79000	22000	13600	7850	2470	5770	3080	23000	3100	5930	1260	1800
Day 3, 4, and 5	4700	7020	6580	38000	33000	57000	3060	5550	51900	8840	6060	20500

PCB results prior to 2000 were all less than detection limits. Starting in 2000 detection limits were lowered so that usable concentrations were available.

Note: For reference purposes, the ATSDR indicates that typical mean PCB concentrations in background soil are less than 100,000 pg/g

					Tox. ⁵	Tox. ⁶	Tox. ⁷
РАН	NYSDEC	NYSDEC	EPA	NYS	Profile	Profile	Profile
	SCO^1	SCO^2	screening	Rural	Rural soil	Agr. Soil	Urban soil
	unrestricted	restricted	level ³	soil	background	background	background
				survey ⁴			
Napthalene	12,000	100,000	3,900	17-24	NA	NA	NA
Acenaphthylene	100,000	100,000	3,400,000	110- 500	NA	5	NA
Acenapthene	20,000	100,000	NA	150	1.7	6	NA
Fluorene	30,000	100,000	2,300,000	580	NA	9.7	NA
Phenanthrene	100,000	100,000	NA	8,500	30	48-140	NA
Anthracene	100,000	100,000	17,000,000	620	NA	11-13	NA
Fluoranthene	100,000	100,000	2,300,000	7,400	0.3-40	120-210	200-
	,		99	- ,			166,000
Pyrene	100,000	100,00	1,700,000	8,700	1-19.7	99-150	145-
							147,000
Benzo(A)Anthracene	1,000	1,000	150	2,900	5-20	56-110	169- 59.000
Chrysene	1,000	1,000	15,000	1,300	38.3	78-120	251-640
	1,000	1,000	150-1500	1,500-	10-110	58-250	15,000-
Benzo(B,K)Fluoranthene				3,300			62,000
	NA	NA	NA	NA	NA	53-130	60-14,000
Benzo(E)Pyrene							
Benzo(A)Pvrene	1,000	1,000	15	2,400	2-1,300	4.6-900	165-220
	NA	NA	NA	8,700	NA	NA	NA
Perylene				,			
Dibenzo(A,H)Anthracene	330	330	15	NA	NA	NA	NA
	500	500	150	660	10-15	63-100	8,000-
Indeno(1,2,3-CD)Pyrene							61,000
Benzo(G,H,I)Perylene	100,000	100,000	NA	630	10-70	66	900- 47.000
· · · / •	NA	NA	310.000	NA	NA	NA	NA
2-Methylnaphthalene			- , - • •				
	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene							

Sources:

1,2. New York State Department of Environmental Soil Cleanup Objectives, 9/06. Unrestricted use accounts for the use of the land for raising livestock.

3. USEPA residential soil screening levels (SSL's), September, 2008/

4. NYS Rural Soil Survey, NYSDEC, 2005.

5,6,7. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profiles, 1995/