Onondaga County Health Department

Division of Environmental Health 421 Montgomery Street Syracuse, New York 13202

Incinerator Monitoring Program

2013 Summary Report

April 1, 2014

Submitted To: Cynthia B. Morrow, M.D., M.P.H. Commissioner of Health

Submitted By: Kevin L. Zimmerman Director, Division of Environmental Health Summary Statement: In the monitoring conducted to date, no relationship has been established between the operation of the incinerator and any significant increased levels of constituents in the environment.

Introduction

The Onondaga County Health Department initiated an incinerator monitoring program in 1994, the year prior to the Waste to Energy (WTE) facility being placed into operation. In 2003, the monitoring program for air, soil and ash was reevaluated, and a more effective and efficient program was developed and implemented starting in 2004. As an alternative to offsite air monitoring, direct interaction was established with the Onondaga County Resource Recovery Agency (OCCRA) and the New York State Department of Environmental Conservation (DEC) in providing stack monitoring results and improved assurance on reporting of adverse events and equipment failures. This allows for evaluation of short-term changes in the incinerator emissions, an effective alternative to the previous limited scope offsite air monitoring conducted over a nine year period.

Long-term deposition impacts continue to be evaluated by soil and ash monitoring. All soil samples are analyzed for metals twice a year. Several changes related to organics testing have been implemented based on the low levels detected in the monitoring conducted to date, and the fact that there is no evidence of a trend or levels associated with health risks. Starting in 2009, half of the soil sampling sites were analyzed for organics each year; therefore each site is sampled biennially. The monitoring program has the flexibility of testing a site again in the following year should an elevated level of any organic constituent be detected. The four soil ash route sites have been eliminated from the program. To date these sites have not shown any elevation of metals or organics indicating that ash transport in covered vehicles is not a significant environmental or health concern. Ash, directly from the incinerator continues to be analyzed for metals twice a year and organics once a year. Under present contracts, organic analysis is performed by Axys Analytical Services, LTD, and metal analysis is performed by Life Science Laboratories, Inc. The collection of soil is performed by Onondaga County Health Department, Division of Environmental Health staff, while collection of the ash is the responsibility of Covanta Energy System under New York State Department of Environmental Conservation protocols.

During 2013, the WTE facility processed 315,638 tons of waste.

Air Monitoring

During 2013, the department interacted directly with OCCRA and DEC in review of the stack monitoring results and reporting of adverse events and equipment failures by the facility operator, Covanta Energy. The department also reviewed both the monitoring conducted at the stack on a continuous basis and reported quarterly to DEC, as well as the annual stack test that is performed by an independent contractor. At no time did the monitoring indicate constituents above levels of health concern. The annual stack test incorporates an extensive list of analytes that include metals and organics. All of the analytes were well below permit limits except for one PAH result for one of the burner

units (the other two units were within limits). The other data for the unit did not show any additional elevated parameters which would indicate operational issues. Based on a thorough analysis of the data, the DEC has questions about the validity of the elevated data point. However, Covanta has agreed to test the PAH's annually rather than every five years as required by their permit in order to monitor the situation.

Soil and Ash Testing for Organics

Soil from seven routine soil sites collected in the spring of 2013 was analyzed for dioxins/furans (PCDD/PCDF), polychlorinated biphenyls (PCB's), and polycyclic aromatic hydrocarbons (PAH's). Ash, also collected in the spring of 2013, was analyzed for the same constituents.

Organic sample results are compared to published background data and U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles, EPA Preliminary Remediation Goals, and NYSDEC Soil Cleanup Objectives. In general, little change in levels of these compounds has been observed from background through the present organic screening period. The levels of organics in the ash were similar to reports for ash identified by other investigators and reported in published literature.

Each form of dioxin/furan has associated with it a toxic equivalency factor that is used to calculate a total toxic equivalency (TEQ) for each sample. Attachment A shows the historical dioxin/furan TEQ values for routine soil sites and ash samples. All levels remain well below the ATSDR and EPA action levels and there is no indication of a trend. For ash, dioxin/furan total TEQ remain fairly consistent. Ash is not homogeneous and an inconsistent result occurs occasionally. The results are similar to those reported by other investigators.

Attachment B shows the historical PCB values for routine soil sites and ash samples. All levels remain below the ATSDR and EPA action levels and there is no indication of a trend.

Soil and Ash Testing for Metals

Soil from the fourteen soil sites and ash were analyzed for ten different metals twice during the year (Spring and Fall). The metal results are issued in two different reports, one for soils and one for ash.

In 2011, due to improvements in the contract laboratory's equipment, the detection limits for beryllium, cadmium, and selenium have been lowered. Therefore there are detectable levels of these metals in many of the samples as compared to previous years.

Metal results are compared to background levels, published national averages for urban areas and a statewide rural soil survey. Soil and ash are not homogeneous and can contain materials that can account for an occasional inconsistent result. Hence, a single elevated or depressed value will not be assumed to be indicative of a change at a specific site. Rather, the pattern of values for that specific element must demonstrate a statistically significant difference, which may be indicative of a real environmental change. In general, the metal results for 2013 fall within the expected range of values for urban areas and demonstrate no significant variation from background levels.

Attachment C shows the historical levels for the ten metals at the routine soil sites. Due to the volume of data, the mean (average) of all routine sites and all routine control sites for each year is presented. The complete report includes all of the data for each site. Attachment C-1 provides data on New York State Department of Environmental Conservation Soil Cleanup Objectives, a New York State rural soil survey, and USEPA soil screening levels for metals in residential soil.

Attachment D shows the historical levels of the ten metals in ash.

Summary and Conclusions

In general, the organic and metal results for this monitoring period are within the expected range for urban environments and are below any levels associated with health risk. Any fluctuations in sample results appear to be a reflection of the low levels detected, expected variation as a result of sample collection, preparation, and laboratory procedures, or possible variable levels due to past activities at a site. All levels remain below those associated with health concerns. The results should be viewed in the context of an ongoing program of environmental monitoring performed by the Onondaga County Health Department as a part of its overall Incinerator Monitoring Program. In the monitoring conducted to date, no relationship has been established between the operation of the incinerator and any significant increased levels of constituents in the environment.

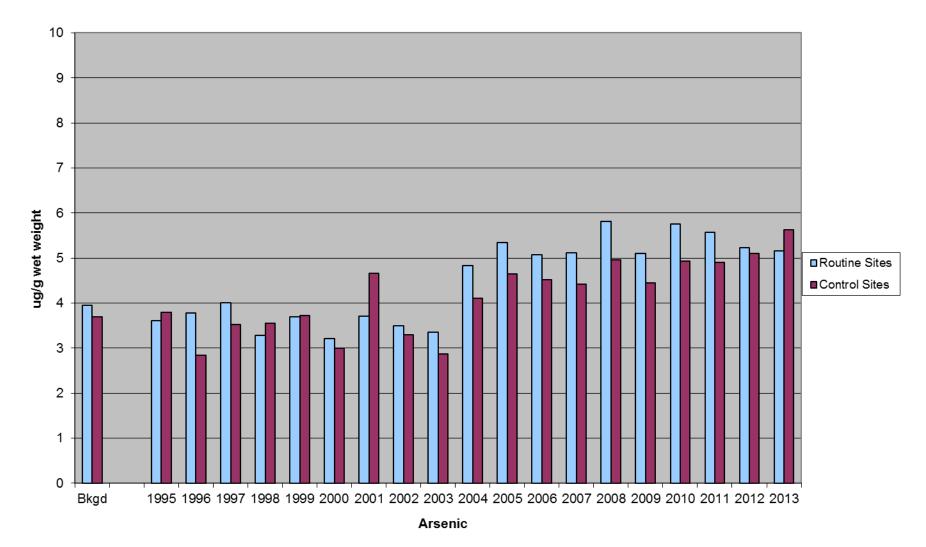
The following are the detailed Incinerator Monitoring Program reports that have been issued on the 2013 soil and ash testing:

2013 Screening Summary for Organic Constituents2013 Soil Metals Analysis Summary2013 Ash Characterization Summary

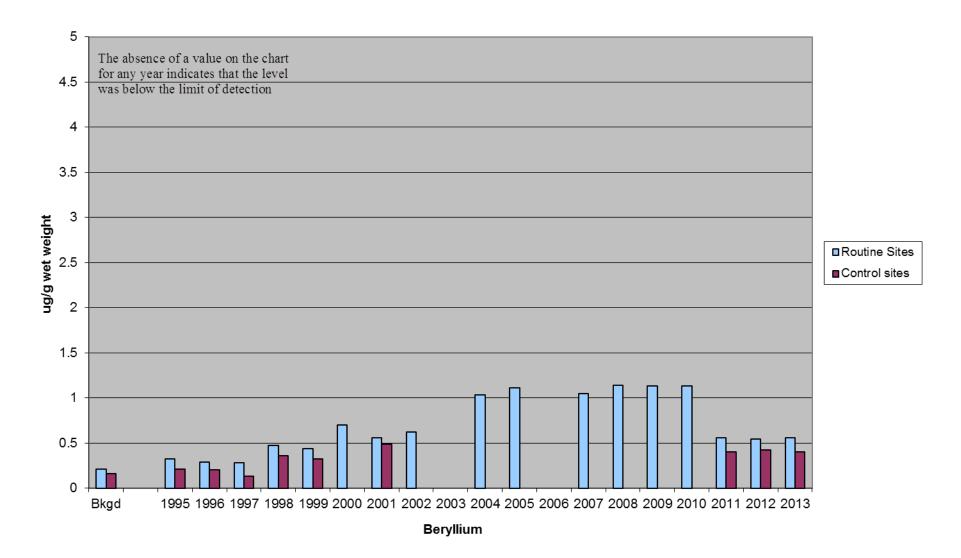
Copies of these reports are available upon request.

As	Arsenic.
ATSDR	Agency for Toxic Substances and Disease Registry
Be	Beryllium.
Cd	Cadmium.
CES	Certified Environmental Services.
Cr	Chromium.
CV	Coefficient of Variation.
ELS	Environmental Laboratory Services.
Hg	Mercury.
LD	Limit of Detection.
ND	None Detected.
ug/g	micrograms per gram.
Ni	Nickel.
OCCF	Onondaga County Correctional Facility.
OCHD	Onondaga County Health Department.
PAH	Polyaromatic Hydrocarbon
PCB	Polychlorinated Biphenyls
PCDD/PCDF	Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans
Pb	Lead.
pg/g	picograms per gram
PPM	parts per million.
SD	Standard Deviation.
Se	Selenium.
SHFD	Sentinel Heights Fire Department
V	Vanadium.
WTE	Waste to Energy Facility.
Zn	Zinc.
~	approximately.
<	Less than.
>	Greater than.
NA	Not applicable.
NS	Not sampled.

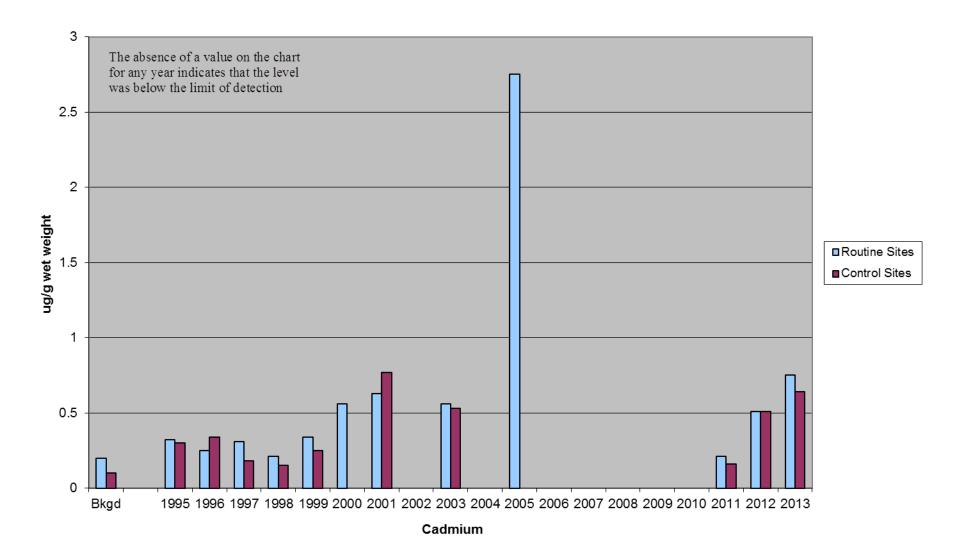
Attachment A

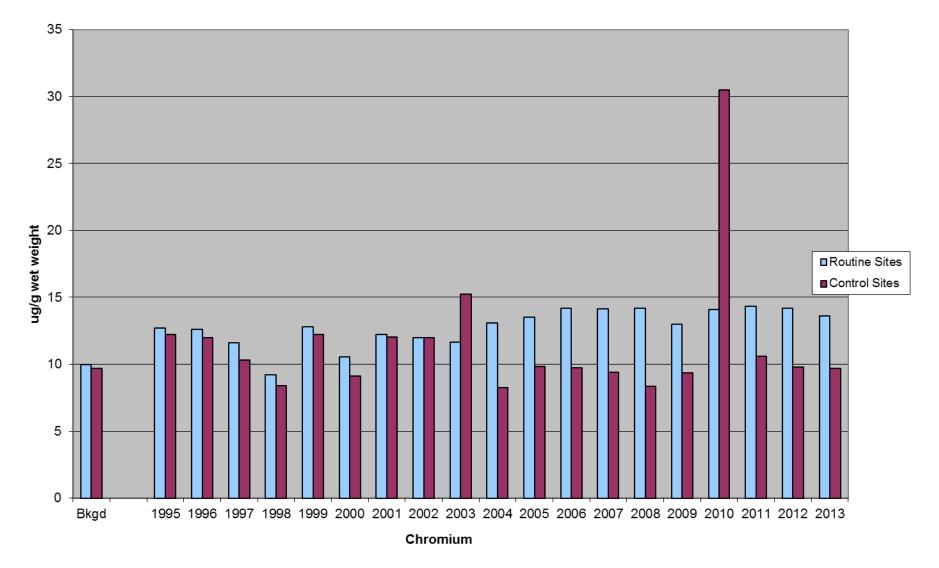

Attachment A															
				Dioxin/Furan TE	Q Soil Resuts Th	rough Year 2013	(pa/a dry weight)								
				Ro	utine Soil Sites										
Site	ļ					Year			Į.						
	1001	1000		0004										0010	
	1994	1999	2000	2001	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Clark Reservation	1.8	1.2	2.27	1.42	1.23	2.03	1.90	1.76	1.73	1.26	***	1.64	***	1.75	***
lamesville Beach	0.6	0.5	1.09	0.82	0.70	0.71	0.97	0.86	0.93	0.77	***	0.52	***	0.488	***
CCF	0.79	2.2	1.68	1.47	1.26	1.38	5.54	1.52	1.94	1331.72@	1.72	***	2.13	***	7.67
DOT @ Jaquith	2		1.5	1.64	3.41	2.41	3.78	3.38	1.73	39.90@	2.62	***	3.95	***	2.43
Dutch Hill *	0.77		1.41	1.16	1.40	1.03	1.26	1.02	1.02	0.64	***	0.73	***	2.44	***
Erie - Poolsbrook *	1.39		1.5	1.14	1.86	**	**	**	**	**	**	**	**	**	**
Nottingham	0.51		0.78	0.79	0.80	0.70	0.94	0.85	0.84	0.74	0.76	***	0.43	***	0.791
SHFD	12		8.02	9.89	9.72	7.02	8.09	6.27	7.20	10.74	***	7.12	***	16	***
Sevier Rd	1.8		2.07	2.58	2.56	**	**	**	**	**	**	**	**	**	**
Beaver Lake *			0.51	0.53	0.85	0.70	0.72	0.64	0.69	0.65	0.38	***	0.5	***	0.751
Ch. 3 Towers			3.36	3.88	3.35	9.66	7.79	7.69	5.39	2.44	3.72	***	0.45	***	1.02
Gen.Crushed Stone			2.77	1.98	2.13	**	**	**	**	**	**	**	**	**	**
Highland Forest			1.18	1.24	0.96	**	**	**	**	**	**	**	**	**	**
ID High School			1.32	1.29	1.12	1.10	1.48	1.16	1.06	1.28	***	1.13	***	0.951	***
Nob Hill			0.93	0.91	0.90	6.83	1.01	1.00	1.07	1.05	***	0.78	***	0.488	***
Pratts Falls			0.91	0.98	0.77	0.87	0.98	0.83	0.94	1.17	0.82	***	0.94	***	0.91
Southwood			0.6	1.14	1.01	1.08	1.05	0.97	1.09	1.01	0.80	***	0.93	***	0.807
Syracuse University			3.11	6.97	9.47	13.89	3.14	3.66	12.96	0.67	***	2.45	***	1.63	***
Denotes Control Sit	es														
** Site no longer sam		am re-evaluation													
*** Site not sampled t															
@ A single elevated	value will not be a	assumed to be in	dicative of a chai	nge at a specific :	site, rather a patt	ern of values mus	t demonstrate a s	statistically signifi	cant difference.						
				<u>C</u>	ombined Ash										
Site					V	ear									
Sile					T.										
	1999-Spring	1999-Fall	2000-Fall	2001-Fall	2002-Fall	2004-Spring	2005-Spring	2006-Spring	2007-Spring	2008-Spring	2009-Spring	2010-Spring	2011-Spring	2012-Spring	2013-Spring
Day 1 and 2	256	153	109	123	177	72	191	246	250	243	168	200	197	116	176
Day 3, 4, and 5	242	205	154	137	220	445	142	148	276	240	126	172	129	127	161
											-				
Note: For reference	urnaaaa tha ATt		n lovel for District		ng/g and the CD		1 000 pg/g								
Note. For reference	Juiposes, the AT	SUR Investigatio	IT IEVEL TOF DIOXIN/	ruian ieu is 50	pg/g and the EP	A clean up level is	s 1,000 pg/g.								

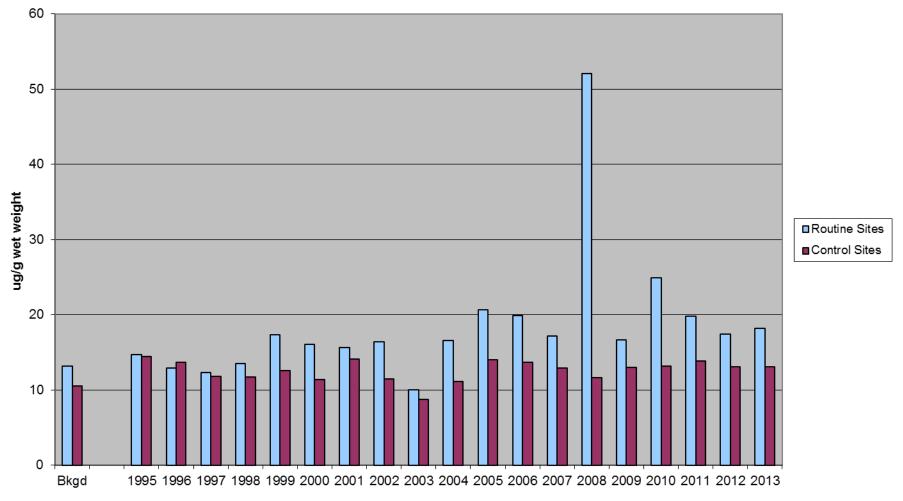
Attachment B


<u>Attachment B</u>													
			PCB Results thr	ough Year 2013	(pa/a drv weiaht)							
				Routine	Soil Sites								
Site													
	2000	2001	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Clark Reservation	6010	2360	3150	2780	3610	2770	4110	2640	***	2960	***	2980	***
Jamesville Beach	1260	644	683	703	1110	781	1220	1610	***	589	***	707	***
OCCF	3080	5230	2000	2310	6940	3120	6320	2190	2810	***	2650	***	3970
DOT @ Jaquith	16100	15400	45100	9220	67100	49100	18000	14200	34700	***	31800	***	38400
Dutch Hill *	2210	1170	1400	1200	1380	1140	1450	1340	***	1060	***	2350	***
Erie - Poolsbrook *	2620	1400	2020	**	**	**	**	**	**	**	**	**	**
Nottingham	2140	2280	3610	1640	7380	2850	3050	2110	4200	***	2020	***	1290
SHFD	3080	2970	1760	1900	2730	1610	2510	1730	***	2240	***	1260	***
Sevier Rd	1870	1600	2250	**	**	**	**	**	**	**	**	**	**
Beaver Lake *	1970	1210	5250	2650	1420	1360	1360	1370	2450	***	1110	***	1380
Ch. 3 Towers	3360	2310	2490	1620	1830	1730	2220	1400	1510	***	723	***	1030
General Crushed Stone	9430	3160	5450	**	**	**	**	**	**	**	**	**	**
Highland Forest	2120	1210	1270	**	**	**	**	**	**	**	**	**	**
JD High School	3580	1780	1732	1810	2640	1780	1720	2720	***	1750	***	1450	***
Nob Hill	3500	2480	2500	3440	2810	2970	2830	2950	***	2510	***	1820	***
Pratts Falls	1890	1840	1440	1620	1650	1220	1450	2050	1230	***	1910	***	1100
Southwood	2240	2160	1150	1480	1470	1470	2750	1640	1640	***	1120	***	1240
Syracuse University	10700	114000	11000	9510	6940	11400	10900	1170	***	78600	***	17400	***
* Denotes Control Sites													
** Site no longer sampled d	ue to program re-e	evaluation											
*** Site not sampled this year	ar. Sites are samp	led every other	/ear.										
				Combi	ned Ash								
Site													
	2000-Fall	2001-Fall	2002-Fall	2004-Spring	2005-Spring	2006-Spring	2007-Spring	2008-Spring	2009-Spring	2010-Spring	2011-Spring	2012-Spring	2013-Sprin
Day 1 and 2	79000	22000	13600	7850	2470	5770	3080	23000	3100	5930	1260	1800	16200
Day 3, 4, and 5	4700	7020	6580	38000	33000	57000	3060	5550	51900	8840	6060	20500	10100
PCB results prior to 2000 detection limits were lowe			-										
Note: For reference purpos	es, the ATSDR in	dicates that typic	cal mean PCB c	oncentrations									

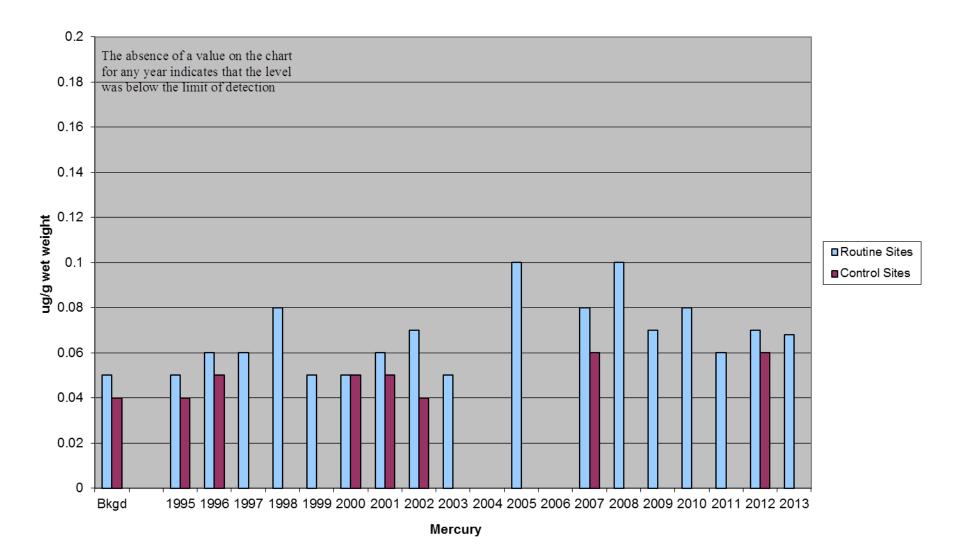
Attachment C


VII.A. Comparison of Annual Mean Values Routine and Routine Control Sites

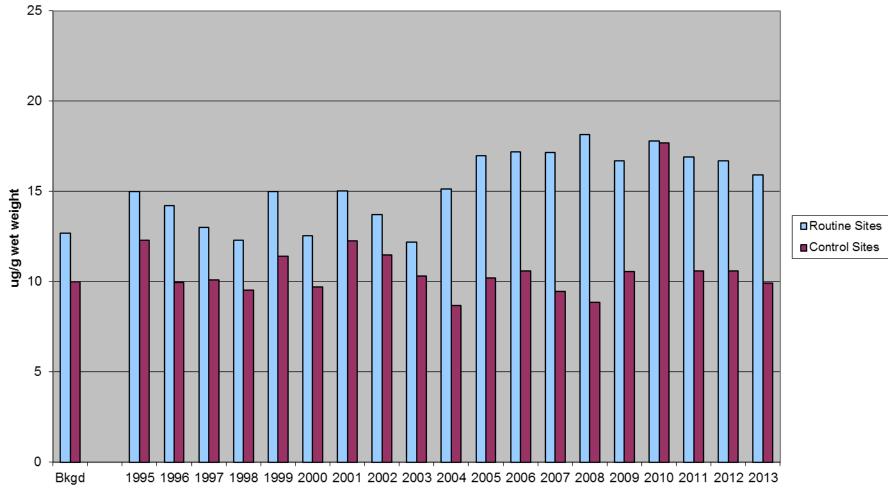

VII.B. Comparison of Annual Mean Values Routine and Control Sites


VII.C. Comparison of Annual Mean Values Routine and Control Sites

VII.D. Comparison of Annual Mean Values Routine and Control Sites

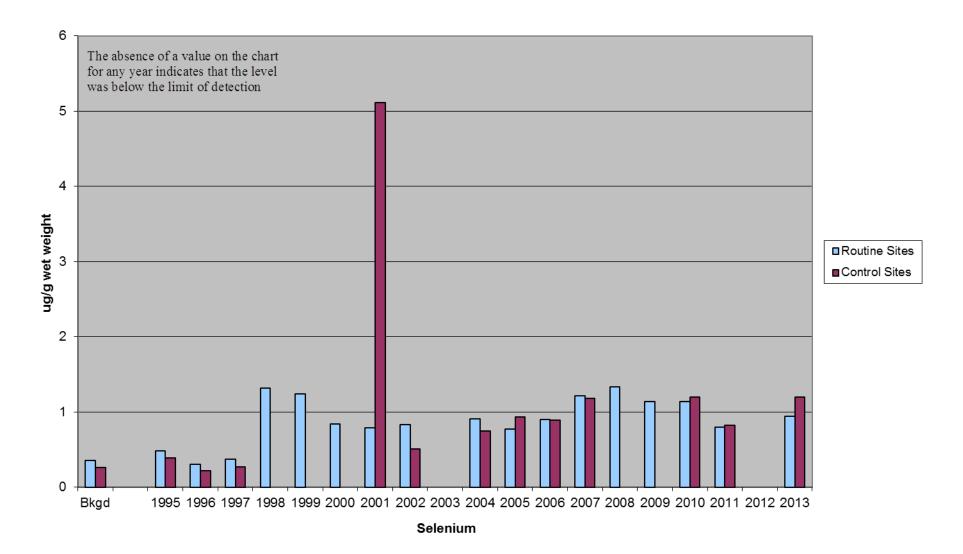


VII.E. Comparison of Annual Mean Values Routine and Control Sites

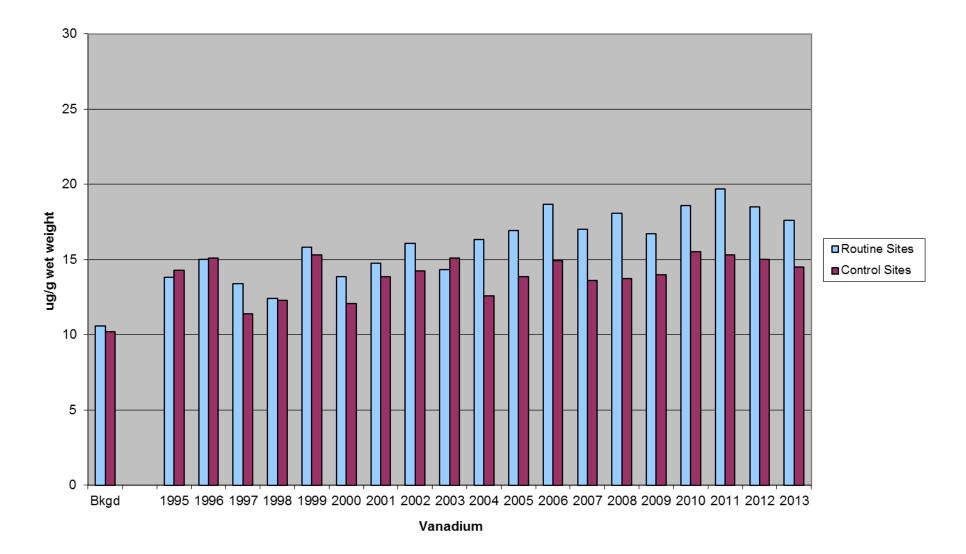


Lead

VII.F. Comparison of Annual Mean Values Routine and Control Sites



VII.G. Comparison of Annual Mean Values Routine and Control Sites



Nickel

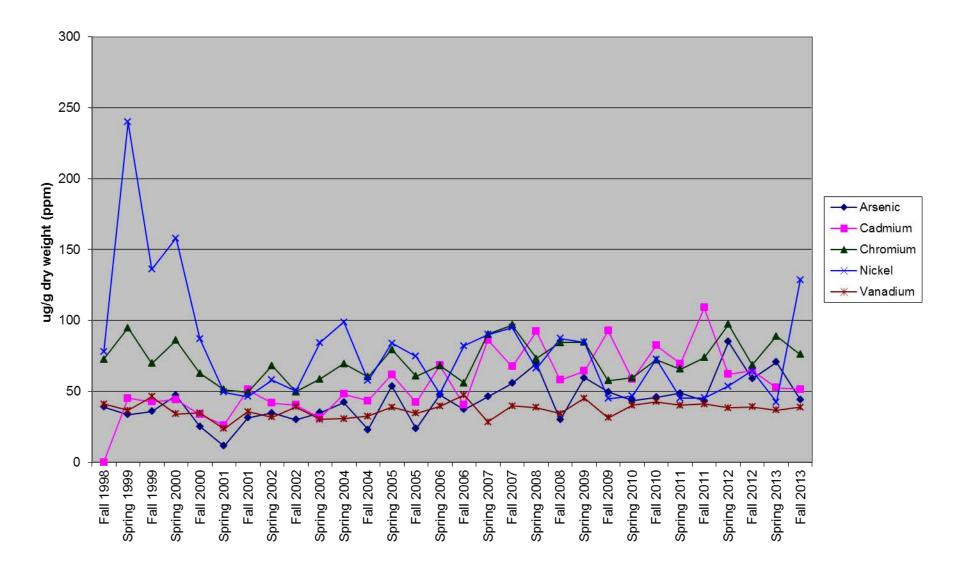

VII.H. Comparison of Annual Mean Values Routine and Control Sites

VII.I. Comparison of Annual Mean Values Routine and Control Sites

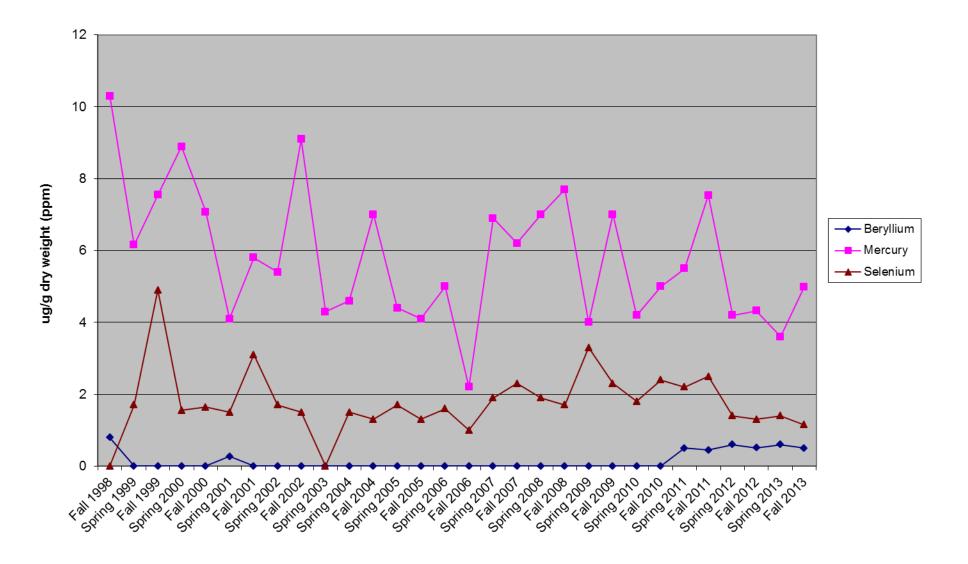
VII.J. Comparison of Annual Mean Values Routine and Routine Control Sites

Zinc

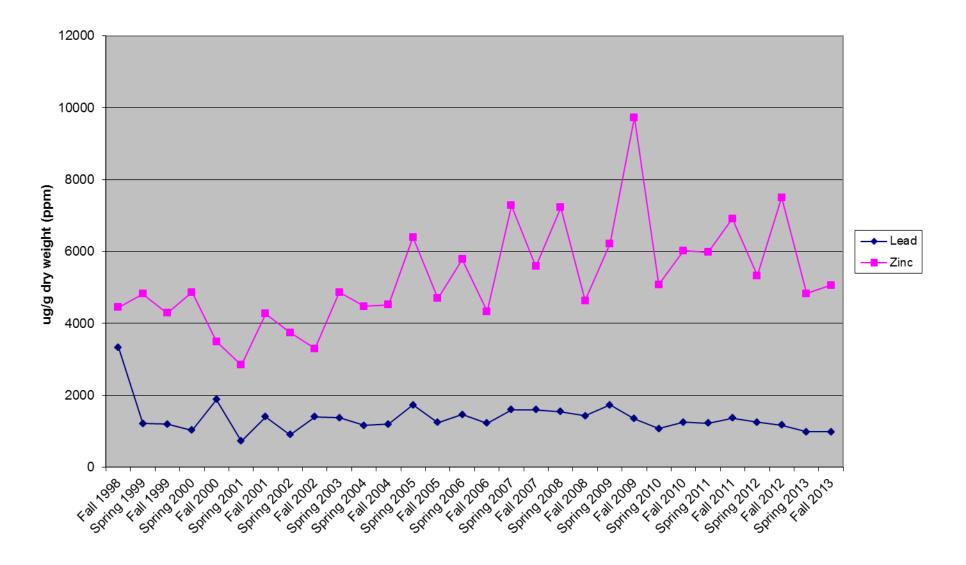
Attachment C-1


Metal	NYS SCO's for restricted use residential (ppm)	Rural Soil Survey (ppm)	USEPA Soil Screening levels for residential (ppm)
Arsenic	16 (0.21)	16	0.39
Beryllium	14	1.2	160
Cadmium	2.5 (0.86)	2.5	70
Chromium	36	30	280
Lead	400	133	400
Mercury	0.81	0.3	6.7
Nickel	140	29.5	1600
Selenium	36	4	390
Vanadium	NA	38	390
Zinc	2,200	180	23,000

New York State Department of Environmental Conservation Soil Cleanup Objectives. The Health Based SCO's were calculated considering all exposure pathways: ingestion, inhalation, dermal, carcinogenic (1 in a million cancer risk), and non-carcinogenic (using risk reference doses). The final health based SCO is based on the most conservative pathway calculation. In some cases the SCO has been modified to match background if the rural background levels for NYS are above the calculated SCO (the health based SCO is in parenthesis). Restricted use means no livestock or animal product consumption.


NYS Statewide Rural Surface Soil Survey (2005)-determined concentration ranges for 170 commonly assessed analytes in discrete surface soil samples collected at randomly selected rural NYS properties.

USEPA Soil Screening Levels for residential–Values were calculated based on the ingestiondermal exposure pathway for residential soils. These screening levels are not action levels or clean up levels, they are a tool for further evaluation. Attachment D


VII.A. Mean Values Ash Data Dry Weight

VII.B. Mean Values Ash Data Dry Weight

VII.C. Mean Values Ash Data Dry Weight

Onondaga County Health Department

Division of Environmental Health 421 Montgomery Street Syracuse, New York 13202

Incinerator Monitoring Program

2013 Soil Metals Analysis Summary

April 1, 2014

Submitted To: Cynthia B. Morrow, M.D., M.P.H. Commissioner of Health

Submitted By: Kevin L. Zimmerman Director, Division of Environmental Health

Contents:

- I. Table of Abbreviations.
- II. Introduction.
- II.A. Executive Introduction.
- III. Summary.
- IV. Soil Sample Site Locations, Maps of Soil Monitoring Sites.
- V. Element Specific Summaries.
- VI. Site Specific Summary Charts.
- VII. Routine Sites; Element specific mean comparison chart; Background 2011.
- VII.A. Routine Sites; Element specific mean comparison bar graph; As.
- VII.B. Routine Sites; Element specific mean comparison bar graph; Be.
- VII.C. Routine Sites; Element specific mean comparison bar graph; Cd.
- VII.D. Routine Sites; Element specific mean comparison bar graph; Cr.
- VII.E. Routine Sites; Element specific mean comparison bar graph; Pb.
- VII.F. Routine Sites; Element specific mean comparison bar graph; Hg.
- VII.G. Routine Sites; Element specific mean comparison bar graph; Ni.
- VII.H. Routine Sites; Element specific mean comparison bar graph; Se.
- VII. I. Routine Sites; Element specific mean comparison bar graph; V.
- VII. J. Routine Sites; Element specific mean comparison bar graph; Zn.
- Attachment A. NYSDEC Cleanup Objectives, NYS rural soil survey, USEPA screening levels.

As	Arsenic.
ATSDR	Agency for Toxic Substances and Disease Registry
Be	Beryllium.
Cd	Cadmium.
CES	Certified Environmental Services.
Cr	Chromium.
CV	Coefficient of Variation.
ELS	Environmental Laboratory Services.
Hg	Mercury.
LD	Limit of Detection.
ND	None Detected.
ug/g	micrograms per gram.
Ni	Nickel.
OCCF	Onondaga County Correctional Facility.
OCHD	Onondaga County Health Department.
PAH	Polyaromatic Hydrocarbon
PCB	Polychlorinated Biphenyls
PCDD/PCDF	Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans
Pb	Lead.
pg/g	picograms per gram
PPM	parts per million.
SD	Standard Deviation.
Se	Selenium.
SHFD	Sentinel Heights Fire Department
V	Vanadium.
WTE	Waste to Energy Facility.
Zn	Zinc.
~	approximately.
<	Less than.
>	Greater than.
NA	Not applicable.
NS	Not sampled.

II. Introduction:

The analysis of soil samples provides a useful and convenient mechanism for monitoring changes in the environment. Surface soil samples can be representative of deposition of atmospheric particulate materials, and normally provides a continuous, cumulative monitor for many such events. The soil sample analyses described in this report is part of an ongoing program of environmental monitoring performed by the Onondaga County Health Department as part of its overall Incinerator Monitoring Program.

This report represents data from the analyses of soils collected during the calendar year 2013, which is the nineteenth year of operation of the Waste to Energy (WTE) Facility. Three samples were collected at each site location during each sampling event. An independent contract laboratory created one composite sample from each sampling event and used this sample for metal content analysis.

II.A. Executive Introduction:

Metals analysis, along with sample composite preparation for this reporting period, was conducted by Life Science Laboratories, Inc. (formerly O'Brien and Gere Laboratory, Inc.) The collection of all environmental samples was, and continues to be, the responsibility of the Onondaga County Health Department's Division of Environmental Health.

Results of soil analyses from the start of the Incinerator Monitoring Program until June 1998 were reported exclusively on a wet weight basis. Starting with the second half of 1998, soil sample results have been reported on both a wet and dry weight basis. Each of these reported values provides important information regarding site specific data. Wet weight values provide ambient concentrations, the conditions in which soil may be ingested. This information is useful in determining risk assessment factors in environmental matrices. Wet weight values will be used for historical site comparison. Dry weight values will allow for better comparison with future metal concentrations, removing the factor of soil moisture variability and seasonal fluctuations. Dry weight values will tend to be higher than wet weight since the weight of the "inert" water is removed in the concentration calculations.

III. Summary:

In November 1994, the Onondaga County Resource Recovery Agency, in contract with the Covanta Energy Company (formerly Ogden Martin Company), commenced operation of a municipal solid waste incinerator. This undertaking was part of a multifaceted solid waste management program to achieve a reduction of volume of landfill waste, energy withdrawal and the removal of solids incompatible with incineration. Part of the management program for the reuse of materials and the removal of materials prior to the municipal waste stream had been started earlier.

The Onondaga County Health Department initiated a program in 1994 to include short and long term monitoring aspects to document any health implications to the public and environmental changes from the incinerator. In 2003 the monitoring program was re-evaluated to provide a more effective and efficient program. Direct interaction was established with the Onondaga County Resource Recovery Agency (OCCRA) and the New York State Department of Environmental Conservation (DEC) in providing stack monitoring results and improved assurance on reporting of adverse events and equipment failures. This allows for effective evaluation of short-term change in the incinerator emissions rather than the previous limited scope offsite air monitoring conducted over a nine year period. Several changes were implemented in 2009 based on the low levels of organic constituents detected in the monitoring conducted to date, and the fact that there is no evidence of a trend or levels associated with health risks. The fourteen routine soil sites (which include two control sites) continue to be sampled and analyzed twice a year for ten different metals. Half of the sites (7, including one control) are being tested for organics once a year and documented in a separate report. The four ash route sites have been eliminated from the program. These sites were located along the route that trucks take to carry ash across and out of the County. To date these sites have not shown any elevation of metals or organics and the trucks are covered at all times. Ash, directly from the incinerator, continues to be analyzed for metals twice a year and organics once a year. The department continues to interact directly with OCCRA and DEC in review of stack monitoring results.

Fourteen soil sample sites are currently established as routine sites. Some of these sites were specifically chosen because of their proximity to the WTE facility and their potential to show maximum impact from its operation (due either to a high likelihood of deposition or the impact of deposition on any areas with "sensitive individuals"). These sites included Southwood, Sentinel Heights, Channel 3 Towers, Jamesville Pen., DOT@Jaquith, and Clark Reservation. Sites such as Jamesville-Dewitt High School, The Nottingham, and Nob Hill Apartments were chosen because of their large population of "sensitive individuals" (i.e., the very young and the elderly). Regions at or near potentially high impact areas in publicly owned land were chosen to ensure long-term accessibility. These sites include Pratts Falls, Jamesville Beach, and Syracuse University. Two sites (Beaver Lake and Dutch Hill) have been established as routine control sites because they are considered to be outside the impact area of the WTE facility.

The individual values for each element are presented in this report as a means of evaluating the intra-site variation. Element mean values have been calculated based on results above the limit of detection for comparison with historical data. Further, we have prepared an overall summary of all the data points and their associated statistical parameters on an element-specific basis, as a means of evaluating inter-site variation as well.

It is anticipated that the primary basis for evaluation of potential environmental changes will be both site and element specific from a strictly statistical basis. Hence, a single elevated or depressed value will not be assumed to be indicative of a change at a specific site. Rather, the pattern of values for that specific element must demonstrate a statistically significant difference, which may be indicative of a real environmental change.

While this study was designed to be locally focused with a concern for potential environmental contamination of local origin, it is also hoped that this compilation of data may be a useful benchmark for the determination of subtle environmental impacts covering a large area, and not necessarily a function of local activities.

In 2011, due to improvements in laboratory equipment, the detection limits for beryllium, cadmium, and selenium were lowered. Therefore there are detectable levels of these metals in many of the soil samples starting in 2011 as compared to previous years.

The ten metals are discussed individually in the metal specific summaries, which follow. Levels of metals in soils can be compared with background levels (samples taken prior to the operation of the incinerator) and to national averages, as shown in the site specific summaries. In addition, Attachment A provides data on New York State Department of Environmental Conservation Soil Cleanup Objectives, a New York State rural soil survey, and USEPA soil screening levels for residential soil. In general, the metal results for the 2013 soil sampling year fall within the expected range of values. All levels remain below those associated with health concerns.

IV. Soil Sample Site Locations:

Routine Soil Monitoring Sites (*Denotes Control Sites):

1.	*Beaver Lake:	Beaver Lake County Park is located approximately 13 miles NW of the City of Syracuse in the Town of Lysander. The sample site is located in the overflow parking area, in the SE corner of the park.
2.	Clark Reservation:	Clark Reservation State Park is located approximately 0.5 miles SE of the WTE facility on Route 173. The sample site is in an open grassy area, adjacent to the basketball court.
3.	*Dutch Hill Road:	The sampling site is located on the Dutch Hill Road Radio Tower site, approximately 11 miles SSW of the City of Syracuse, in the Town of Otisco.
4.	Jamesville Beach:	The Jamesville Beach County Park is located on the western shore of the Jamesville Reservoir, off Apulia Road. The sample site is near the entrance of the park.
5.	Jamesville-DeWitt H.S.:	The Jamesville-DeWitt High School is approximately 3.5 miles ENE of the WTE facility. The sample site is located on the southern edge of the property, near the bus garage.
6.	Nob Hill:	The Nob Hill Apartments are located between Seneca Turnpike and Lafayette Road. The sampling site is located near the rental office building.
7.	The Nottingham:	The Nottingham Retirement Complex is located approximately 2 miles ENE of the WTE facility on Nottingham Road. The sample site is in the NE corner of the property, adjacent to the maintenance garage.
8.	Syracuse University:	The Syracuse University site is located approximately 1/2 mile north of the WTE facility, near the Skytop administrative building. The sample site is adjacent to the radio towers.
9.	Channel 3 Tower:	The Channel 3 Tower site (formerly Tennessee Gas site) is approximately 4 miles south of the WTE on Sentinel Heights Road. The tower site is just south of the Sentinel Heights Road / Bull Hill Road intersection.
10.	Jamesville Pen.:	The Jamesville Penitentiary (Onondaga County Correctional Facility) is located on Route 173, just east of the village of Jamesville. The sample site is adjacent to the sewage treatment plant.
11.	Southwood:	The Southwood Park is located approximately 1 mile south of the WTE facility, off Barker Hill Road and Southwood Park Drive. The sample site is adjacent to the picnic area.

12. Sentinel Heights:	The Sentinel Heights Fire Department is located on Dave Tilden Road, approximately 2.5 miles SSW of the WTE facility. The sampling site is on the lawn, just east of the building.
13. DOT @ Jaquith:	The Onondaga County DOT property site borders Brighton Ave, the Jaquith Industries property and Route 81, near the Route 481 - Route 81 interchange. The sampling site is located in the middle of the grassy open field.
14. Pratts Falls:	The Pratts Falls County Park is located approximately 2 miles NNE of the Village of Pompey. The sample site is in the center of the park, in an open recreation area.

·

•

V. Element Specific Summaries:

A. Arsenic

Soil levels of Arsenic range from 1 - 40 ppm nationwide, while NYS levels average 16 ppm. Routine site values in the 2013 study varied from 3.0 ppm wet weight (3.0 ppm dry wt) to a high value of 8.7 ppm wet weight (11.0 ppm dry wt), and a mean value of 5.16 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the lower range of nationwide and NYS averages.

B. Beryllium

Soil levels of beryllium range from 0.01 - 10 ppm nationwide, while NYS levels average 1.2 ppm. Routine site values in the 2013 study varied from 0.34 ppm wet weight (0.34 ppm dry wt) to a high value of 1.4 ppm wet weight (1.7 ppm dry wt), and a mean value of 0.56 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

C. Cadmium

Soil levels for cadmium are highly variable and average ~0.25 ppm nationwide, while NYS levels average 2.5 ppm. Routine site values in the 2013 study varied from 0.33 ppm wet weight (0.33 ppm dry wt) to a high value of 1.2 ppm wet weight (1.7 ppm dry wt), and a mean value of 0.75 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

D. Chromium

Soil levels of chromium are highly variable, ranging from "trace" to thousands of ppm nationwide, while NYS levels average 30 ppm. Routine site values in the 2013 study varied from 9.0 ppm wet weight (9.0 ppm dry wt) to a high value of 19.0 ppm wet weight (24.0 ppm dry wt), and a mean value of 13.6 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

E. Lead

Soil levels of lead range from <10 to 30 ppm nationwide, with NYS averaging 133 ppm in rural areas. Higher levels can occur as a function of proximity to

vehicular traffic. Routine site values in the 2013 study varied from 8.2 ppm wet weight (11.0 ppm dry wt) to a high value of 59.0 ppm wet weight (75.0 ppm dry wt), and a mean value of 18.2 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

F. Mercury

Soil levels of mercury range from 0.02 to 0.60 ppm nationwide, while NYS levels average 0.3 ppm. Routine site values in the 2013 study varied from below detection limits to a high value of 0.098 ppm wet weight (0.12 ppm dry wt), and a mean value of 0.068 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

G. Nickel

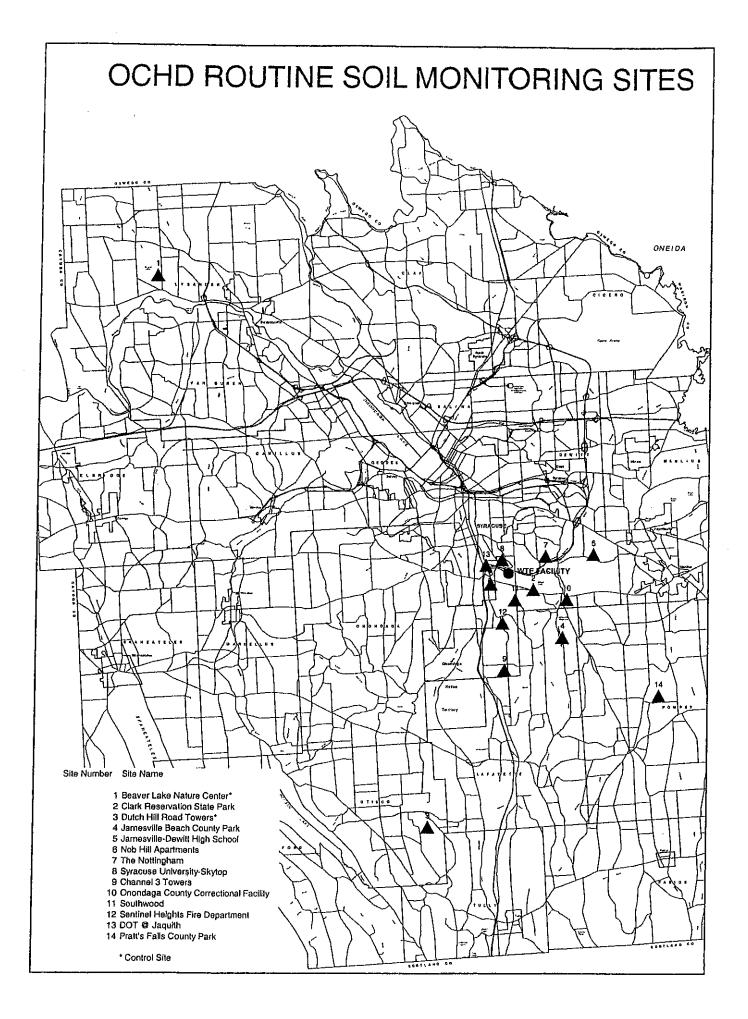
Soil levels of nickel range from 4 to 80 ppm nationwide, while NYS levels average 29.5 ppm. Routine site values in the 2013 study varied from 7.4 ppm wet weight (12.0 ppm dry wt) to a high value of 29.0 ppm wet weight (37.0 ppm dry wt), and a mean value of 15.9 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

H. Selenium

Soil levels of selenium range from 0.01 to 0.20 ppm nationwide, while NYS levels average 4 ppm. Routine site values in the 2013 study varied from below the detection limit to a high value of 1.2 ppm wet weight (1.9 ppm dry wt), and a mean value of 0.94 ppm wet weight.

I. Vanadium


Soil levels of vanadium range from 3 to 310 ppm nationwide, while NYS levels average 38 ppm. Routine site values in the 2013 study varied from 13.0 ppm wet weight (17.0 ppm dry wt) to a high value of 24.0 ppm wet weight (32.0 ppm dry wt), and a mean value of 17.6 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

J. Zinc

Soil levels of zinc range from 10 to 300 ppm nationwide, while NYS levels average 180 ppm. Routine site values in the 2013 study varied from 25.0 ppm wet weight (35.0 ppm dry wt) to a high value of 99.0 ppm wet weight (130.0 ppm dry wt), and a mean value of 54.0 ppm wet weight.

These do not represent statistically significant changes when compared to background findings and levels remain in the range of nationwide and NYS averages.

	2013 Soil Sur	nmary Data; Bea	aver Lake (ppm; u	ıg/g)		
			Spring 2013		Fall 2013	
Element	National Average		Three Point	Three Point	Three Point	Three Point
		Mean 1994 (wet wt.)	Composite (wet wt.)	Composite (dry wt.)	Composite (wet wt.)	Composite (dry w
Arsenic	1.0 - 40	3.51	3.9	5	3.8	5
Beryllium	.01-10	0.22	0.3	0.38	0.25	0.33
Cadmium	~0.25	<0.1	0.3	0.37	0.48	0.64
Chromium	trace-thousands	5.63	6.7	8.4	6	8
Lead	<10 - 30	6.02	7.3	9.2	8.2	11
Mercury	.0206	0.024	<0.063	<0.063	<0.05	<0.067
Nickel	4.0 -80	5.72	5.5	6.9	4.9	6.6
Selenium	.012	0.227	<0.5	<0.63	0.79	1.1
Vanadium	3.0 -310	8.72	11	14	11	14
Zinc	10.0 -300	22.7	22	28	23	31

VI. Site Specific S	ummary						
	2013 Soil Sun	nmary Data; Cla	rk Reservation (pŗ	om; ug/g)		
			Spring 2013			Fall 2013	
Element	National Average	_	Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	ee Point mposite (dry wt.)
Arsenic	1.0-40	4.87	8.7		11	7.1	9.8
Beryllium	0.01-10	0.5	1.4		1.7	1.1	1.5
Cadmium	~0.25	0.26	0.84		1.1	0.91	1.3
Chromium	trace-thousands	11.83	19		24	14	19
Lead	<10-30	15.03	26		33	22	30
Mercury	0.02-0.6	0.063	0.098		0.12	0.074	0.1
Nickel	4.0-80	13.39	21		26	15	21
Selenium	0.01-0.2	0.259	0.52		0.65	1.2	1.7
Vanadium	3.0-310	11.26	24		30	19	27
Zinc	10.0-300	30.7	38		48	25	35
Analysis perform	ned by Life Sciences	s Laboratories, Inc					

VI. Site Specific S						
	2013 Soil Sur	nmary Data; Dut	ch Hill (ppm; ug/	g)		
			Spring 2013		Fall 2013	
Element	National Average		Three Point	Three Point	Three Point	Three Point
Arsenic	1.0-40	4.58	Composite (wet wt.) 5.1	Composite (dry wt.) 6.6	Composite (wet wt.) 9.7	Composite (dry wt.) 13
Beryllium	0.01-10	0.16	0.53	0.69	0.52	0.71
Cadmium	~0.25	0.15	0.56	0.72	1.2	1.7
Chromium	trace-thousands	10.14	13	17	13	18
Lead	<10-30	15.19	17	22	20	28
Mercury	0.02-0.6	0.048	<0.05	<0.065	<0.05	<0.069
Nickel	4.0-80	12.45	14	18	15	21
Selenium	0.01-0.2	0.3	<0.5	<0.65	1.6	2.1
Vanadium	3.0-310	9.96	18	23	18	24
Zinc	10.0-300	55.8	74	96	79	110
Analysis perform	med by Life Science:	s Laboratories, Inc.				

VI. Site Specific S	ummary						
	2013 Soil Sur	nmary Data; Jan	nesville Beach (p	эp	m; ug/g)		
			Spring 2013			Fall 2013	
Element	National Average		Three Point		Three Point	 Three Point	Three Point
Arsenic	1.0-40	2.99	Composite (wet wt.) 4.2		Composite (dry wt.) 5.0	Composite (wet wt.) 3.8	Composite (dry wt.) 4.7
Beryllium	0.01-10	0.26	0.52		0.62	0.37	0.46
Cadmium	~0.25	0.16	0.44		0.53	0.74	0.91
Chromium	trace-thousands	9.73	13		16	11	14
Lead	<10-30	8.77	11		13	12	15
Mercury	0.02-0.6	0.037	<0.05		<0.06	<0.05	<0.062
Nickel	4.0-80	13.62	16		19	13	16
Selenium	0.01-0.2	0.236	<0.5		<0.6	0.98	1.2
Vanadium	3.0-310	9.12	17		20	14	18
Zinc	10-300	27.3	36		42	32	39
Analysis perform	med by Life Sciences	s Laboratories, Inc.					

VI. Site Specific S	ummary						
	2013 Soil Sur	nmary Data; Jan	nesville Dewitt H	.S	. (ppm; ug/g)		
			Spring 2013			Fall 2013	
Element	National Average		Three Point		Three Point	Three Point	Three Point
		Mean 1994 (wet wt.)	Composite (wet wt.)	\square	Composite (dry wt.)	 Composite (wet wt.)	Composite (dry wt.)
Arsenic	1.0-40	4.98	5.2		6.4	4.7	6.3
Beryllium	0.01-10	0.23	0.57		0.69	0.47	0.62
Cadmium	~0.25	0.17	0.49		0.6	0.9	1.2
Chromium	trace-thousands	11.37	17		21	15	20
Lead	<10-30	12.9	14		17	15	20
Mercury	0.02-0.6	0.041	<0.05		<0.061	<0.05	<0.066
Nickel	4.0-80	12.07	15		18	15	20
Selenium	0.01-0.2	0.32	<0.5		<0.61	0.89	1.2
Vanadium	3.0-310	11.08	19		24	17	23
Zinc	10-300	33.5	47		58	46	61
Applyoic porfor	med by Life Sciences						

	2013 Soil Sur	nmary Data; Not	o Hill (ppm; ug/g))			
			Spring 2013	;		Fall 2013	
Element	National Average		Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	 Three Point Composite (wet wt.)	 Three Point Composite (dry wt.)
Arsenic	1.0-40	3.75	4.2	Ш	5.0	3.8	4.8
Beryllium	0.01-10	0.23	0.52		0.61	0.43	0.55
Cadmium	~0.25	0.17	0.41	Ш	0.48	0.71	0.91
Chromium	trace-thousands	8.94	13		15	12	15
Lead	<10-30	11.74	20	Ш	23	14	18
Mercury	0.02-0.6	0.037	<0.05		<0.059	<0.05	<0.064
Nickel	4.0-80	12.65	12	Ш	14	12	15
Selenium	0.01-0.2	0.355	<0.5		<0.59	0.92	1.2
Vanadium	3.0-310	10.15	18		21	16	20
Zinc	10-300	26.5	36	Ш	42	42	54
Analysis perforr	ned by Life Sciences	s Laboratories, Inc.					

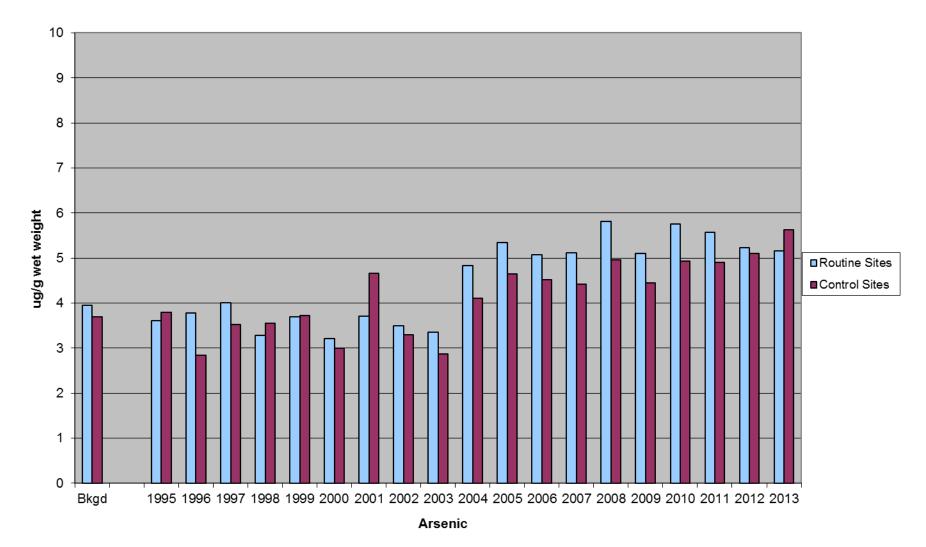
Site Specific Sumr	mary					
	2013 Soil Sur	nmary Data; The	e Nottingham (pp	m; ug/g)		
			Spring 2013		Fall 2013	
Element	National Average		Three Point Composite (wet wt.)	Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	4.4	4.8	5.7	4.4	5.9
Beryllium	0.01-10	0.29	0.59	0.7	0.5	0.68
Cadmium	~0.25	0.21	0.57	0.68	0.95	1.3
Chromium	trace-thousands	10.41	16	19	14	19
Lead	<10-30	8.13	12	14	13	17
Mercury	0.02-0.6	<0.50	0.056	0.067	<0.05	<0.067
Nickel	4.0-80	11.26	16	19	14	19
Selenium	0.01-0.2	0.334	ND	ND	0.79	1.1
Vanadium	3.0-310	10.16	19	22	17	23
Zinc	10-300	31.6	52	62	50	66
Analysis perform	med by Life Sciences	s Laboratories, Inc.				

VI. Site Specific S	ummary						
	2013 Soil Sur	nmary Data; Syr	acuse University	y ((ppm; ug/g)		
			Spring 2013			Fall 2013	
Element	National Average		Three Point		Three Point	Three Point	Three Point
		Mean 1994 (wet wt.)	Composite (wet wt.)		Composite (dry wt.)	Composite (wet wt.)	Composite (dry wt.)
Arsenic	1.0-40	3.15	4.4		5.3	4.2	5.8
Beryllium	0.01-10	0.3	0.52		0.62	0.44	0.61
Cadmium	~0.25	0.22	0.47		0.55	0.85	1.2
Chromium	trace-thousands	9.3	15		18	14	20
Lead	<10-30	13.41	16		19	15	21
Mercury	0.02-0.6	0.046	<0.05		<0.059	<0.05	<0.069
Nickel	4.0-80	11	14		17	13	18
Selenium	0.01-0.2	0.306	<0.5		<0.59	1.1	1.6
Vanadium	3.0-310	10.49	18		22	17	23
Zinc	10-300	33.4	51		60	50	69
Analysis perform	ned by Life Sciences	s Laboratories Inc					

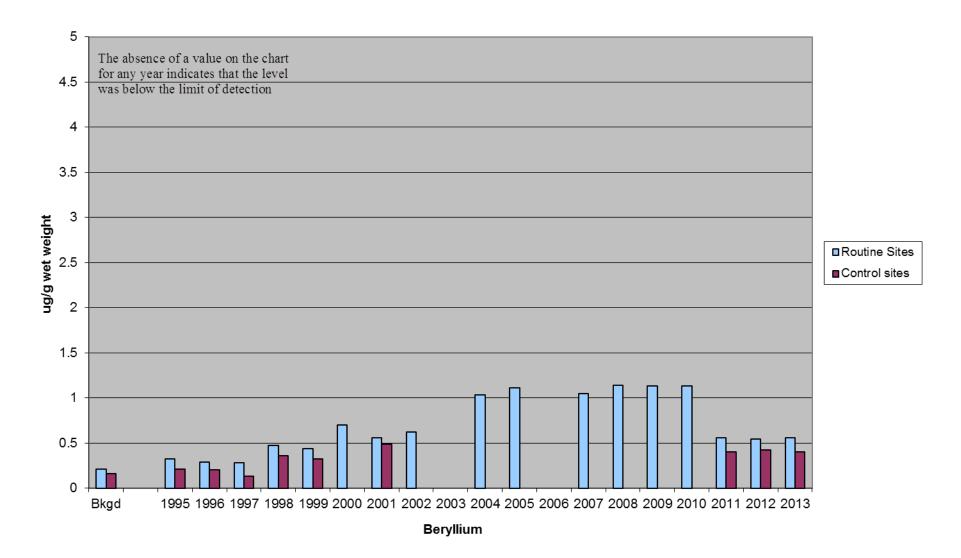
VI. Site Specific S	Summary						
	2013 Soil Sur	nmary Data; Cha	annel 3 Tower (p	p	m; ug/g)		
			Spring 2013	5		Fall 2013	
Element	National Average		Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	5.24	5.2		5.2	4.9	7.7
Beryllium	0.01-10	0.16	0.57		0.57	0.49	0.77
Cadmium	~0.25	0.34	0.66		0.66	1.1	1.7
Chromium	trace thousands	9.83	13		13	12	18
Lead	<10-30	11.18	14		14	12	18
Mercury	0.02-0.6	0.046	0.068		0.068	<0.05	<0.078
Nickel	4.0-80	13.49	18		18	16	26
Selenium	0.01-0.2	0.355	<0.5		<0.5	1.2	1.9
Vanadium	3.0-310	8.27	16		16	15	23
Zinc	10-300	56.4	73		73	63	99
Analysis perform	med by Life Sciences	s Laboratories, Inc.					

VI. Site Specific S	Summary						
	2013 Soil Sur	nmary Data; Jan	nesville Pen. (OC	C	CF) (ppm; ug/g)		
			Spring 2013			Fall 2013	
Element	National Average		Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	 Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	6.4	6.5		6.5	6.4	8.3
Beryllium	0.01-10	0.29	0.52		0.52	0.38	0.5
Cadmium	~0.25	0.25	0.67		0.67	0.92	1.2
Chromium	trace-thousands	9.8	12		12	9.2	12
Lead	<10-30	18.38	22		22	16	21
Mercury	0.02-0.6	0.053	0.056		0.056	<0.05	<0.065
Nickel	4.0-80	20.53	22		22	29	37
Selenium	0.01-0.2	0.38	<0.5		<0.5	1.1	1.4
Vanadium	3.0-310	12.03	16		16	13	17
Zinc	10-300	38.7	92		92	42	54
Analysis perform	med by Life Sciences	s Laboratories, Inc.					

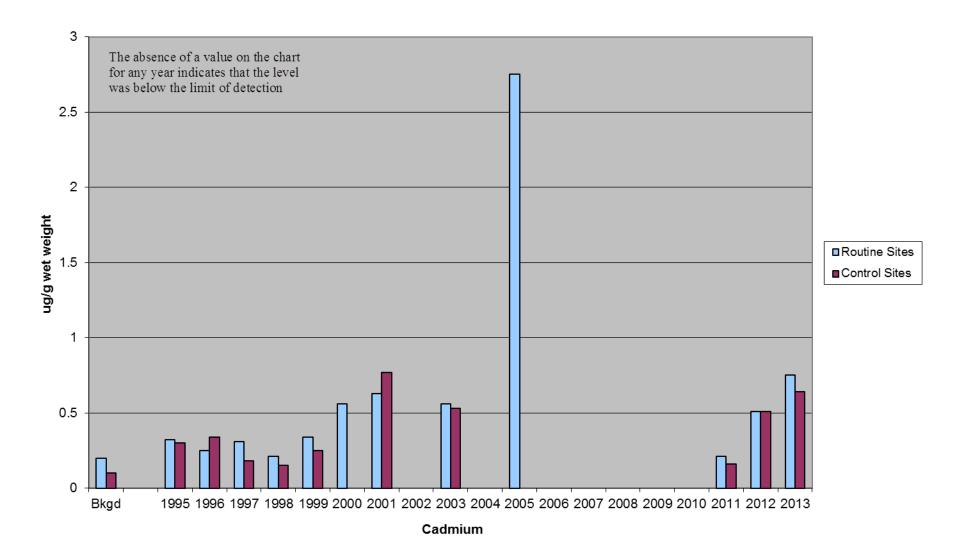
VI. Site Specific S	Summary						
	2013 Soil Sur	nmary Data; Sou	uthwood (ppm; u	ıg/	/g)		
			Spring 2013	;		Fall 2013	
Element	National Average		Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	 Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	3.23	4.6	\Box	6.2	4.2	6.9
Beryllium	0.01-10	0.31	0.6		0.81	0.52	0.85
Cadmium	~0.25	0.24	0.61		0.83	0.98	1.6
Chromium	trace-thousands	12.17	15		20	14	22
Lead	<10-30	11.95	12		16	13	21
Mercury	0.02-0.6	0.045	<0.068		<0.068	<0.05	<0.081
Nickel	4.0-80	13.39	14		19	13	22
Selenium	0.01-0.2	0.353	<0.5		<0.68	1.1	1.8
Vanadium	3.0-310	13.14	18		24	17	27
Zinc	10-300	44.1	99		130	47	77
Analysis perfor	med by Life Science:	s Laboratories, Inc.					

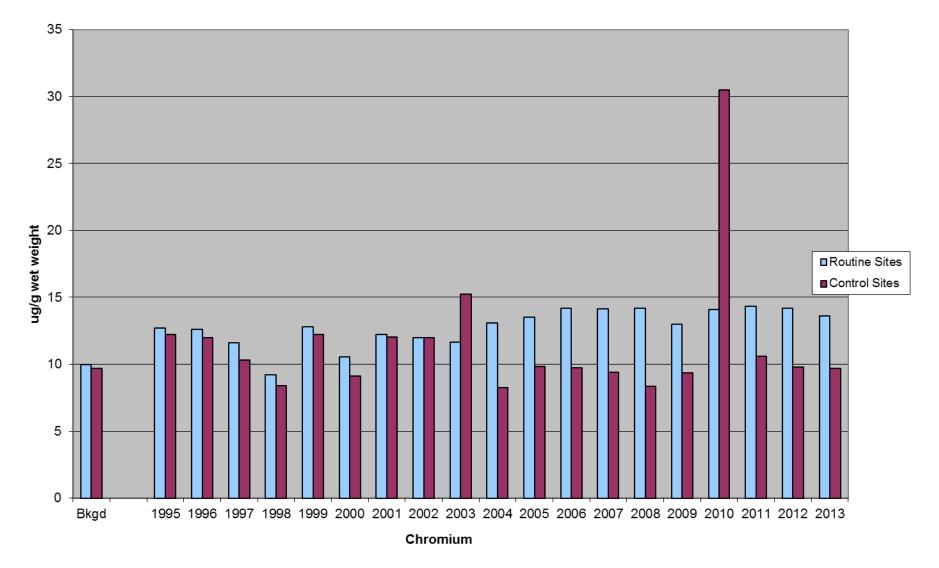

	2013 Soil Sur	nmary Data; Ser	ntinel Heights (pp	on	n; ug/g)		
			Spring 2013			Fall 2013	
Element	National Average		Three Point Composite (wet wt.)		Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry
Arsenic	1.0-40	4.71	6.1		8.3	6.6	9.3
Beryllium	0.01-10	0.41	0.7		0.95	0.63	0.89
Cadmium	~0.25	0.44	0.65		0.87	1.2	1.7
Chromium	trace-thousands	9.98	14		19	13	19
Lead	<10-30	13.16	13		18	15	21
Mercury	0.02-0.6	0.043	0.051		0.069	<0.05	<0.07
Nickel	4.0-80	17.06	20		28	21	30
Selenium	0.01-0.2	0.511	<0.50		<0.67	1.1	1.6
Vanadium	3.0-310	14.22	24		32	22	32
Zinc	10-300	46.9	56		75	59	83
Analysis perfor	med by Life Sciences	s Laboratories, Inc.					

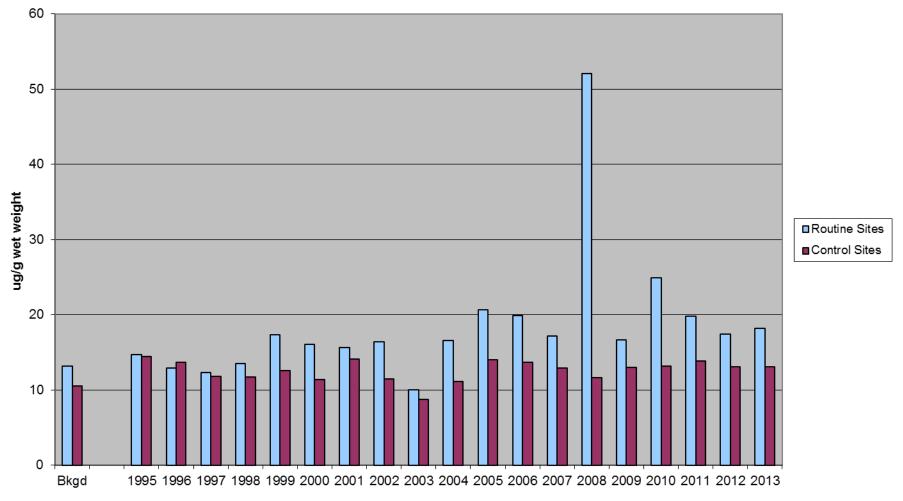
VI. Site Specific S	Summary							
	2013 Soil Sur	nmary Data; DO	T@Jaquith Indus	st	ries (ppm; ug/g))		
			Spring 2013				Fall 2013	
Element	National Average		Three Point Composite (wet wt.)		Three Point Composite (dry wt.)		Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	3.46	5.8		7.1		5.3	6.7
Beryllium	0.01-10	0.21	0.53		0.65		0.44	0.56
Cadmium	~0.25	0.13	0.59		0.73		1	1.3
Chromium	trace-thousands	10.17	17		21		15	20
Lead	<10-30	29.67	53		64		59	75
Mercury	0.02-0.6	0.043	0.069		0.065		0.07	0.089
Nickel	4.0-80	9.44	18		22		16	21
Selenium	0.01-0.2	0.15	<0.5		<0.61		0.065	0.83
Vanadium	3.0-310	8.6	17		21		15	20
Zinc	10-300	34.1	95		120		94	120
Analysis perfor	med by Life Sciences	s Laboratories, Inc.						


	2013 Soil Sur	nmary Data; Pra	tts Falls (ppm; u	g/g)		
			Spring 2013		Fall 2013	
Element	National Average		Three Point Composite (wet wt.)	Three Point Composite (dry wt.)	Three Point Composite (wet wt.)	Three Point Composite (dry wt.)
Arsenic	1.0-40	2.51	3	3	5.8	6.8
Beryllium	0.01-10	0.12	0.34	0.34	0.35	0.41
Cadmium	~0.25	0.22	0.3	0.3	0.91	1.1
Chromium	trace-thousands	9.05	9	9	9.7	11
Lead	<10-30	11.18	8.2	8.2	9.3	11
Mercury	0.02-0.6	0.034	<0.05	<0.05	<0.05	<0.058
Nickel	4.0-80	9.62	7.4	7.4	12	14
Selenium	0.01-0.2	0.269	<0.5	<0.5	0.67	0.79
Vanadium	3.0-310	11.44	15	15	16	18
Zinc	10-300	28.4	35	35	36	42
Analysis perfor	med by Life Sciences	s Laboratories, Inc.				

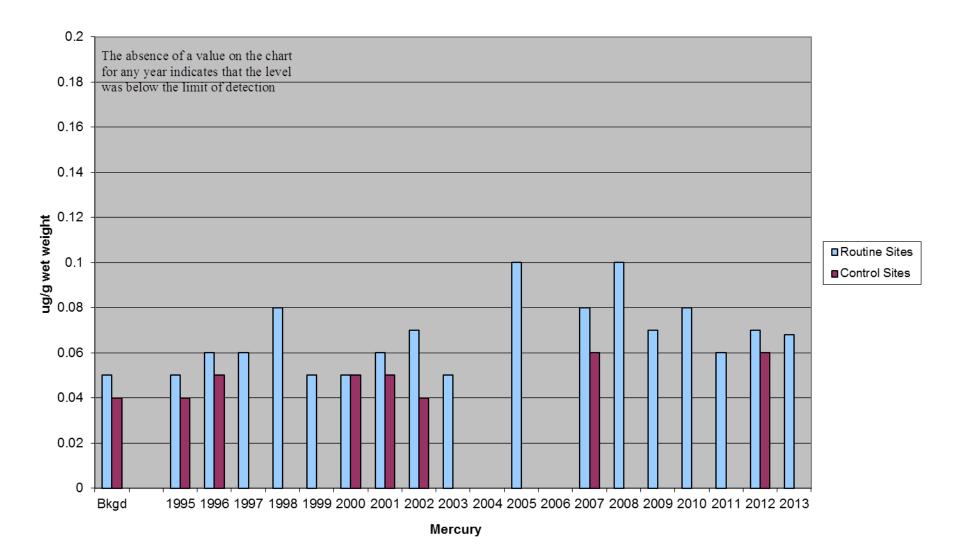
VII. Routine Sites Mean Comparison										
Soil Metal Analysis - ug/g wet weight	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
Background Mean - Routine Sites	3.95	0.21	0.2	9.99	13.2	0.05	12.7	0.35	10.6	35.6
Background Mean - Routine Control Sites	3.95	0.21	0.2	9.99	10.5	0.03	12.7	0.35	10.0	36
	0.1	0.10	0.1	0.11	10.0	0.01	10	0.20	10.2	00
1995 Mean - Routine Sites	3.61	0.32	0.32	12.7	14.7	0.05	15	0.48	13.8	45.3
1995 Mean - Routine Control Sites	3.8	0.21	0.3	12.2	14.4	0.04	12.3	0.39	14.3	50.3
1000 Maan Dautina Sitaa	0.70	0.00	0.05	10.0	12.0	0.00	14.0	0.0	45	42.4
1996 Mean - Routine Sites 1996 Mean - Routine Control Sites	3.78 2.84	0.29	0.25	12.6 12	12.9 13.7	0.06	14.2 9.95	0.3	15 15.1	43.4 48.2
	2.01	0.2	0.01	12	10.7	0.00	0.00	0.LL	10.1	10.2
1997 Mean - Routine Sites	4.01	0.28	0.31	11.6	12.3	0.06	13	0.37	13.4	37.4
1997 Mean - Routine Control Sites	3.52	0.13	0.18	10.3	11.8	NA	10.1	0.27	11.4	41.3
1008 Maan Bouting Sites	3.28	0.47	0.21	9.23	12.5	0.08	10.0	1 22	12.4	41.4
1998 Mean - Routine Sites 1998 Mean - Routine Control Sites	3.55	0.47	0.21	9.23 8.42	13.5 11.7	0.08 NA	12.3 9.54	1.32 NA	12.4 12.3	41.4 35.5
1550 Weart Routine Control Dites	0.00	0.00	0.10	0.42	11.7		0.04	11/1	12.0	00.0
1999 Mean - Routine Sites	3.69	0.44	0.34	12.8	17.3	0.05	15	1.24	15.8	44.9
1999 Mean - Routine Control Sites	3.72	0.32	0.25	12.2	12.6	NA	11.4	NA	15.3	45
2000 Maan Bouting Sites	2.21	0.7	0.56	10 55	16.02	0.05	10.50	0.84	12.04	41.46
2000 Mean - Routine Sites 2000 Mean - Routine Control Sites	3.21 3	0.7 NA	0.56 NA	10.55 9.12	16.02 11.41	0.05	12.53 9.7	0.84 NA	13.84 12.07	37.39
	•			0112		0.00	0.1		12101	01100
2001 Mean - Routine Sites	3.71	0.56	0.63	12.24	15.65	0.06	15.01	0.79	14.75	45.07
2001 Mean - Routine Control Sites	4.66	0.49	0.77	12.03	14.08	0.05	12.26	5.11	13.85	44.51
2002 Maan Bouting Sites	2.5	0.62	NA	11.06	16.4	0.07	10 71	0.92	16.09	41.02
2002 Mean - Routine Sites 2002 Mean - Routine Control Sites	3.5 3.3	0.62 NA	NA NA	11.96 11.99	16.4 11.43	0.07	13.71 11.46	0.83 0.51	16.08 14.24	41.02 42.87
	0.0		101	11.00	11.10	0.01	11.10	0.01	11.21	12.07
2003 Mean - Routine Sites	3.35	NA	0.56	11.65	10	0.05	12.17	NA	14.32	36.08
2003 Mean - Routine Control Sites	2.87	NA	0.53	15.24	8.76	NA	10.29	NA	15.08	36.26
2004 Mean - Routine Sites	4.83	1.03	NA	13.1	16.6	NA	15.12	0.91	16.34	48.79
2004 Mean - Routine Sites 2004 Mean - Routine Control Sites	4.03	1.03 NA	NA	8.26	16.6 11.15	NA	8.67	0.91	12.58	43.23
				0.20			0.01	0.110	12100	10120
2005 Mean - Routine Sites	5.34	1.11	2.75	13.51	20.64	0.1	16.98	0.77	16.94	50.34
2005 Mean - Routine Control Sites	4.65	NA	NA	9.85	13.97	NA	10.2	0.93	13.87	51.55
2006 Mean - Routine Sites	5.07	NA	NA	14.16	19.92	NA	17.2	0.9	18.68	55.98
2006 Mean - Routine Control Sites	4.52	NA	NA	14.16 9.72	13.67	NA	10.6	0.89	14.93	49.46
2007 Mean - Routine Sites	5.11	1.05	NA	14.13	17.15	0.08	17.14	1.21	17.01	50.95
2007 Mean - Routine Control Sites	4.42	NA	NA	9.42	12.91	0.06	9.46	1.18	13.62	52.5
2008 Mean - Routine Sites	5.81	1.14	NA	14.16	52.02	0.1	18.16	1.33	18.08	72.83
2008 Mean - Routine Control Sites	4.96	NA	NA	8.36	11.67	NA	8.87	NA	13.73	38.1
2009 Mean- Routine Sites	5.1	1.13	NA	12.99	16.66	0.07	16.69	1.14	16.73	53.85
2009 Mean- Routine Control Sites	4.45	NA	NA	9.33	13.01	NA	10.56	NA	13.97	51.28
2010 Mean-Routine Sites	5.75	1.13	NA	14.08	24.9	0.08	17.8	1.14	18.6	57.91
2010 Mean-Routine Control Sites	4.93	NA	NA	30.5	13.2	NA	17.7	1.14	15.5	54.8
	F 77	0.50	0.01	11.00	40.0	0.00	40.0	0.0	40.7	05 75
2011 Mean-Routine Sites 2011 Mean- Routine Control Sites	5.57 4.9	0.56 0.4	0.21 0.16	14.32 10.6	19.8 13.8	0.06 NA	16.9 10.6	0.8 0.82	19.7 15.3	65.75 53.3
2012 Mean-Routine Sites 2012 Mean-Routine Control Sites	5.23 5.1	0.54	0.51	14.2 9.8	17.4 13.1	0.07	16.7 10.6	NA NA	18.5 15	51.4 54.5
	5.1	0.42	0.01	5.0	13.1	0.00	10.0		10	54.5
2013 Mean-Routine Sites	5.16	0.56	0.75	13.6	18.2	0.068	15.9	0.94	17.6	54
2013 Mean-Routine Control Sites	5.63	0.4	0.64	9.7	13.1	NA	9.9	1.2	14.5	49.5


VII.A. Comparison of Annual Mean Values Routine and Routine Control Sites

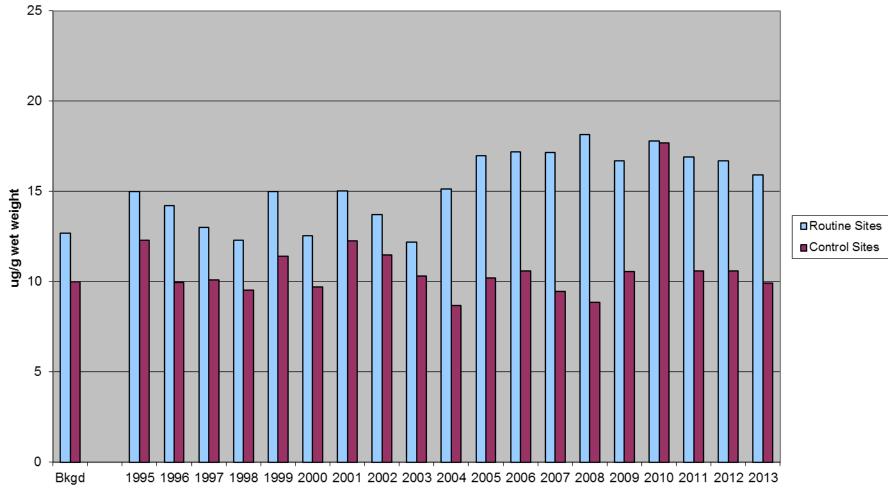

VII.B. Comparison of Annual Mean Values Routine and Control Sites


VII.C. Comparison of Annual Mean Values Routine and Control Sites

VII.D. Comparison of Annual Mean Values Routine and Control Sites

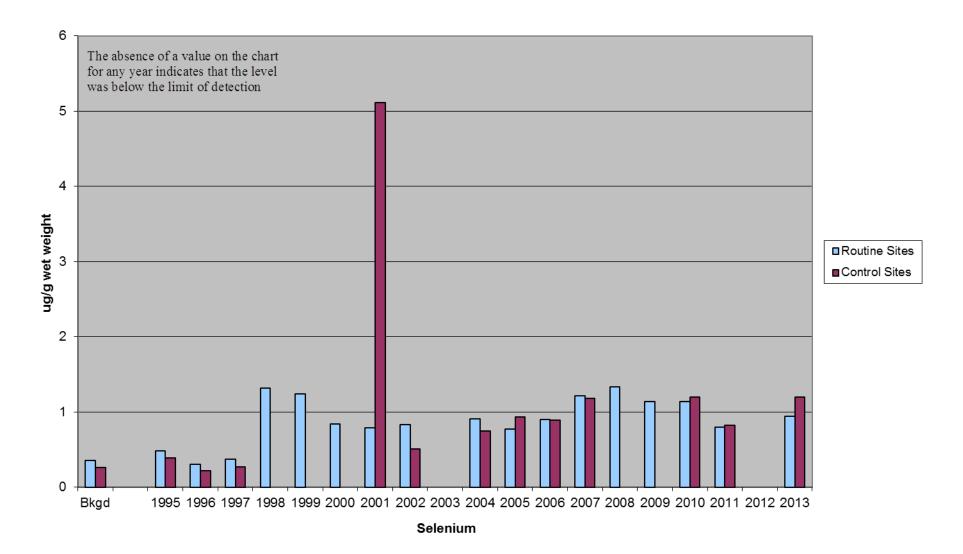


VII.E. Comparison of Annual Mean Values Routine and Control Sites

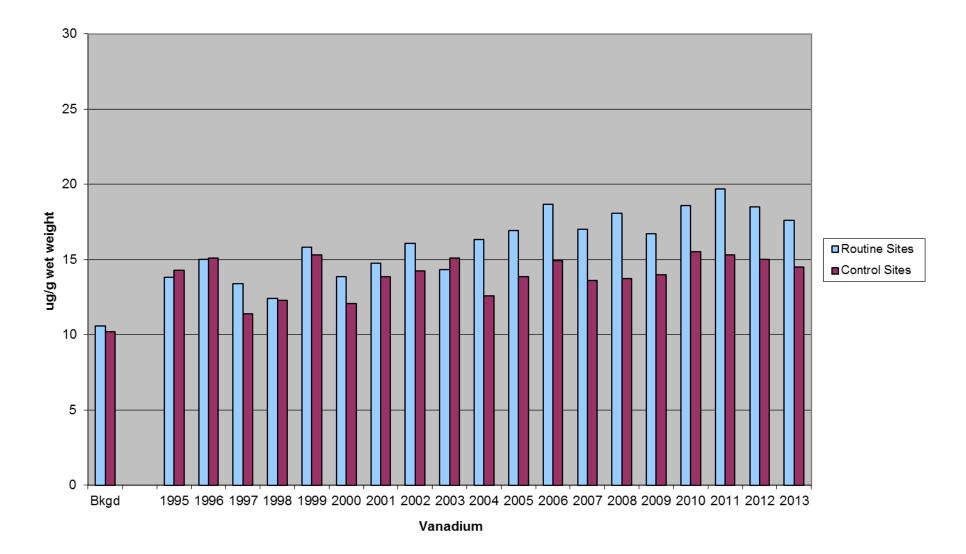


Lead

VII.F. Comparison of Annual Mean Values Routine and Control Sites



VII.G. Comparison of Annual Mean Values Routine and Control Sites



Nickel


VII.H. Comparison of Annual Mean Values Routine and Control Sites

VII.I. Comparison of Annual Mean Values Routine and Control Sites

VII.J. Comparison of Annual Mean Values Routine and Routine Control Sites

Zinc

Metal	NYS SCO's for restricted use residential (ppm)	Rural Soil Survey (ppm)	USEPA Soil Screening levels for residential (ppm)
Arsenic	16 (0.21)	16	0.39
Beryllium	14	1.2	160
Cadmium	2.5 (0.86)	2.5	70
Chromium	36	30	280
Lead	400	133	400
Mercury	0.81	0.3	6.7
Nickel	140	29.5	1600
Selenium	36	4	390
Vanadium	NA	38	390
Zinc	2,200	180	23,000

New York State Department of Environmental Conservation Soil Cleanup Objectives. The Health Based SCO's were calculated considering all exposure pathways:ingestion, inhalation, dermal, carcinogenic (1 in a million cancer risk), and non-carcinogenic (using risk reference doses). The final health based SCO is based on the most conservative pathway calculation. In some cases the SCO has been modified to match background if the rural background levels for NYS are above the calculated SCO (the health based SCO is in parenthesis). Restricted use means no livestock or animal product consumption.

NYS Statewide Rural Surface Soil Survey (2005)-determined concentration ranges for 170 commonly assessed analytes in discrete surface soil samples collected at randomly selected rural NYS properties.

USEPA Soil Screening Levels for residential–Values were calculated based on the ingestiondermal exposure pathway for residential soils. These screening levels are not action levels or clean up levels, they are a tool for further evaluation. Onondaga County Health Department Division of Environmental Health 421 Montgomery Street Syracuse, New York 13202

Incinerator Monitoring Program

2013 Ash Characterization Summary

April 1, 2014

Submitted To: Cynthia B. Morrow, M.D., M.P.H. Commissioner of Health

Submitted By: Kevin L. Zimmerman Director, Division of Environmental Health

Contents:

- I. Table of Abbreviations.
- II. Executive Summary.
- III. Introduction.
- IV. Element Specific Summary.
- V. Summary and Conclusions.
- VI. Wet Weight Ash Metal Analysis Data: Fall 1995 to Fall 2011.
- VI.A. Wet Weight Mean Values Ash Data Graph: As, Cd, Cr, Ni, V
- VI.B. Wet Weight Mean Values Ash Data Graph: Be, Hg, Se
- VI.C. Wet Weight Mean Values Ash Data Graph: Pb, Zn
- VII. Dry Weight Ash Metal Analysis Data: Fall 1998 to Fall 2011.
- VII.A. Dry Weight Mean Values Ash Data Graph: As, Cd. Cr, Ni, V
- VII.B. Dry Weight Mean Values Ash Data Graph: Be, Hg, Se
- VII.C. Dry Weight Mean Values Ashe Data Graph: Pb, Zn
- VIII. NYSDEC Ash Residue Characterization Project, 1992, Summary of Ash Results.

I. Table of Abbreviations

The following abbreviations may be used throughout this report:

As	Arsenic.
Be	Beryllium.
Cd	Cadmium.
CES	Certified Environmental Services.
Cr	Chromium.
CV	Coefficient of Variation.
ELAP	Environmental Laboratory Approval Program.
ELS	Environmental Laboratory Services.
Hg	Mercury.
LD	Limit of Detection.
Ni	Nickel.
NYSDEC	New York State Department of Environmental Conservation.
OCHD	Onondaga County Health Department.
Pb	Lead.
ppm	parts per million.
ug/g	micrograms per gram (= ppm).
SD	Standard Deviation.
Se	Selenium.
V	Vanadium.
WTE	Waste To Energy Facility.
Zn	Zinc.
~	approximately.
<	Less than.
>	Greater than.
NA	Not applicable.

Note: Values <LD were not included in average, SD and CV calculations.

II. Executive Summary

Sample analyses for the 2013 ash characterization study were conducted by Life Science's Laboratories, Inc. (formerly O'Brien and Gere Laboratories, Inc.). As has been the format since the Fall 1998 reporting period, the year 2013 results have been reported on both a wet weight and dry weight basis. Results through the Spring 1998 reporting period were reported exclusively on a wet weight basis. Each of these reported values provides important information regarding ash metal data. Wet weight values will be used for historical comparison relative to the conditions of the ash as it leaves the WTE Facility. Dry weight values will allow for better comparison with future metal concentrations, removing the variability of ash moisture content. Dry weight values will tend to be higher than wet weight since the weight of the "inert" water is removed in the concentration calculations.

This report uses the individual metal "mean plus three standard deviations" as a benchmark for consistent results. Calculations include all wet weight data through the Fall 2013 sampling period. This standard is supported by the NYSDEC data in which at least 95% of the individual metal results are within the "mean plus three standard deviations" for the respective metals. It is evident by looking at the data from this report and the NYSDEC data that there will be occasional results outside of this benchmark. Occasional outlying sample results are not considered to be of significance. Such results may be due to the fact that, while every effort is used to create a homogeneous combined ash sample, it is not feasible to obtain such a sample because of the presence of incombustible "chunks" in the bottom ash.

Ash collection and compositing continues to be the responsibility of Covanta Energies Systems of Onondaga under NYSDEC protocols. The Health Department and Covanta Energies utilize split samples to ensure the most accurate results.

III. Introduction

The purpose of this study is to provide part of an ongoing evaluation of ash generated at the Onondaga County Resource Recovery Agency Waste-To-Energy facility. The results summarized in this report reflect analysis of combined fly and bottom ash samples from Fall 1995 through Fall 2013. The ash samples were analyzed for total metal concentration for arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, selenium, vanadium and zinc.

In 2011, due to improvements in laboratory equipment, the detection limits for beryllium, cadmium, and selenium have been lowered. Therefore there are detectable levels of these metals in many of the ash samples starting in 2011 as compared to previous years.

As part of our evaluation of the metals content of the ash samples, the average value concentrations from each semiannual sampling period are compared to the analogous values from the combined ash samples from the NYSDEC "Ash Residue Characterization Project" (1992). Average and standard deviation calculations do not include those results less than a limit of detection.

The results in this report represent total metal content in the combined fly and bottom ash from the WTE Facility. The standard test for determining the leachability of constituents of combined ash is the TCLP protocol established by the USEPA and accepted by the NYSDEC. Total metal content is not necessarily indicative of the leachability of contaminants from the ash.

IV. Element Specific Summary

Arsenic

Ash sample values in the 2013 study varied from 24.0 ppm wet weight (32.0 ppm dry wt) to a high value of 77.0 ppm wet weight (98.0 ppm dry wt). There were no arsenic results above the mean + 3SD level of 86 ppm wet weight.

The distribution and average for arsenic during the 2013 sampling period is consistent with the NYSDEC mean arsenic value of 19.1 ppm.

Beryllium

Ash sample values in the 2013 study varied from 0.33 ppm wet weight (0.45 ppm dry wt) to a high value of 0.55 ppm wet weight (0.7 ppm dry wt). One ash sample had a beryllium value above the mean + 3SD level of 0.64 ppm wet weight.

Beryllium was not evaluated in the DEC study.

Cadmium

Ash sample values in the 2013 study varied from 29.0 ppm wet weight (40.0 ppm dry wt) to a high value of 54.0 ppm wet weight (68.0 ppm dry wt). There were no cadmium results above the mean + 3SD level of 63.3 ppm wet weight.

The distribution and average for cadmium during the 2013 sampling period is consistent with the NYSDEC mean cadmium value of 33.6 ppm.

Chromium

Ash sample values in the 2013 study varied from 48.0 ppm wet weight (59.0 ppm dry wt) to a high value of 130.0 ppm wet weight (160.0 ppm dry wt). One ash sample had a chromium value above the mean + 3SD level of 122.5 ppm wet weight.

The distribution and average for chromium during the 2013 sampling period is very consistent with the NYSDEC mean chromium value of 259 ppm. The DEC average value of 259 ppm is skewed by a single outlying sample result.

Lead

Ash sample values in the 2013 study varied from 430 ppm wet weight (560 ppm dry wt) to a high value of 1,400 ppm wet weight (1,700 ppm dry wt). There were no lead results above the mean + 3SD level of 1651 ppm wet weight.

The distribution and average for lead during the 2013 sampling period is consistent with the NYSDEC mean lead value of 1,558 ppm.

Mercury

Ash sample values in the 2013 study varied from 1.8 ppm wet weight (2.3 ppm dry wt) to a high value of 6.5 ppm wet weight (9.0 ppm dry wt). There were no mercury results above the mean + 3SD level of 6.7 ppm wet weight.

The distribution and average for mercury during the 2013 sampling period is very consistent with the NYSDEC mean mercury value of 10.9 ppm.

Nickel

Ash sample values in the 2013 study varied from 24.0 ppm wet weight (30.0 ppm dry wt) to a high value of 301.0 ppm wet weight (390.0 ppm dry wt). There was one nickel result above the mean + 3SD level of 300 ppm wet weight.

The distribution and average for nickel during the 2013 sampling period is significantly lower than the NYSDEC mean nickel value of 658 ppm.

Selenium

Ash sample values in the 2013 study varied from 0.5 ppm wet weight (0.6 ppm dry wt) to a high value of 1.5 ppm wet weight (1.9 ppm dry wt). There were no selenium results above the mean + 3SD level of 1.9 ppm wet weight.

The distribution and average for selenium during the 2013 sampling period is very consistent with the NYSDEC mean selenium value of 2.66 ppm.

Vanadium

Ash sample values in the 2013 study varied from 23.0 ppm wet weight (31.0 ppm dry wt) to a high value of 39.0 ppm wet weight (51.0 ppm dry wt). There were no vanadium results above the mean + 3SD level of 42.7 ppm wet weight.

Vanadium was not evaluated in the DEC study.

Zinc

Ash sample values in the 2013 study varied from 2,900 ppm wet weight (3,800 ppm dry wt) to a high value of 4,700 ppm wet weight (6,100 ppm dry wt). One ash sample had a zinc value above the mean + 3SD level of 5,455 ppm wet weight.

The distribution and average for zinc during the 2013 sampling period is consistent with the NYSDEC mean zinc value of 3,666 ppm.

V. Summary and Conclusions

The data contained in this report indicates consistent levels for all metals in the combined ash residue throughout the first nineteen years of operation. The samples from the Fall 1995 to Fall 2013 sampling periods are also consistent with those of the NYSDEC "Ash Residue Characterization Project".

The Health Department recognizes that there are inherent difficulties in using the NYSDEC study for comparison. The DEC study uses several different ash producing sources for their data. Also, the data is from a very specific time period. It does not take into account changes in the municipal solid waste stream due to time of year, increased recycling efforts, etc. However, results from the Health Department's study have shown that these variables have little significant effect on the total metal concentration in the ash. This is apparent when looking at the individual results and the sampling period averages over time. Well over 95% of the individual results from the ash characterization studies to date are within the "mean plus three standard deviation" criteria. Additionally, average metal values for each of the sampling periods show little relative change throughout the time frame of this report.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
11/15 - 16/95	951158	18.7	<.1	42.3	49.2	1189	5.87	44.8	2.09	10.02	3771
11/16 - 17/95	951159	18.7	0.13	36.7	42.2	866	4.26	50.3	1.69	10.02	3200
11/17/95	<u>951160</u>	16.8	0.15	37.7	41.1	1095	3.27	43.9	1.88	9.72	3593
11/17/95	951161	14.1	<.1	45.0	51.0	1164	5.19	38.3	1.85	9.7 <u>2</u> 9.74	<u> </u>
11/17 - 18/95	951162	12.5	<.1	30.7	58.7	1067	3.94	42.5	1.83	10.06	8225
11/18/95	951163	11.9	0.12	54.3	41.2	1174	3.61	54.3	2.16	9.74	3120
11/18/95	951164	7.8	<.1	39.4	48.1	1080	4.97	<u> </u>	2.10	<u>9.74</u> 9.42	
11/18 - 19/95	951165	18.8	<.1	44.1	38.8	1236	5.34	73.6	1.76		3709
11/19/95	951166	19.3	<.1	42.7	51.1	1307	4.38	65.2	2.04	8.52 9.96	4070
11/19/95	951167	14.6	0.20	29.1	39.7	1036	3.40	63.0	1.55	10.60	<u>4577</u> 4517
									1.00	10,00	
		15.3	0.15	40.2	46.1	1121	4.42	52.7	1.90	9.88	4277
COEFFICIENT OF		3.6	0.03	6.9	6.2	116	0.84	10.8	0.19	0.62	1393
	VARIATION	23.7%	20.5%	17.3%	13.4%	10.4%	19.1%	20.4%	10.1%	6.3%	32.6%

.

-

Analyses performed by OCHD.

,

1

·····

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Bervillium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn
03/08 - 19/1996	960129	22.0	0.150	33.9	32.7	897	4.83	24.7	2.25	8.21	
03/08 - 19/1996	960130	13.6	0.160	41.3	33.3	894	7.82	27.7	2.73	8.84	2031
03/08 - 19/1996	960131	10.9	0.220	34.9	30.0	1127	6.70	37.7	1.97	9.87	2038
03/08 - 19/1996	960132	10.0	<.100	26.6	25.2	543	4.73	16.2	1.76	8.63	2191
03/08 - 19/1996	960133	11.8	0.320	20.1	52.0	478	5.13	35.5	1.76	9.70	1821
03/08 - 19/1996	960134	5.6	<.100	29.8	27.0	1022	5.23	25.6	1.97	7.02	1101
03/08 - 19/1996	960135	10.5	<.100	31.0	31.6	910	5.04	<u> </u>	2.51		2135
03/08 - 19/1996	960136	13.3	<.100	22.4	29.1	622	5.20	32.5	1.94	7.54	2010
03/08 - 19/1996	960137	14.0	0.210	21.0	26.2	616	4,44	18.4	2.33	6.81	1448
03/08 - 19/1996	960138	19.6	<.100	24.0	24,5	1062	4.69	22.8	2.35	<u>15.6</u> 8.09	1230
						1001	<u> </u>	22.0	<u> </u>	0.09	1724
AVERAGE STANDARD DEV		13.1	0.21	28.5	31.1	817	5.38	29.8	2.17	9.04	1773
COEFFICIENT OF		4.5	0.11	6.6	7.5	221	1.00	11.3	0.32	2.40	368
		34.3%	53.9%	23.0%	24.2%	27.0%	18.6%	37.9%	14.6%	26.6%	20.8%

Analyses performed by OCHD.

			The second s							
960667	33.1	<.100	46,3	50.8	2028	3.16	59.0	2 45	12.1	4900
960668	25.9	<.100		43.1						4802
960669	29.9	<.100	1	T		1		1		4507
960670			·			· · · · · · · · · · · · · · · · · · ·	1	T	T	3883
960671					1	1				2290
960672						1 ·····	· · · · · · · · · · · · · · · · · · ·	1		4552
									12.9	4481
······			<u></u>					2.84	15.9	3803
					<u> </u>		47.3	2.53	15.7	8196
				· · · · · · · · · · · · · · · · · · ·	1	6.83	53.7	3.05	17.7	6757
				<u>66.9</u>	731	4.41	55.4	1.90	15.7	4732
		····		44.4	751	6.38	69.8	1.35	10.6	2904
		<.100	38.2	50.8	1110	5.90	40.9	2.02	11.8	3278
	37.2	<.100	38.2	87.0	1320	5.50	54.2			11168
960680	30.8	<u><.100</u>	33.0	57.9	697	4.33				
	00.0								11.9	3666
ATION		the second s	······································		1256	6.07	77.5	2.33	15.0	4930
VARIATION	the second s					2.62	85.1	0.41	3.0	2256
			10.270	100.5%	32.5%	43.1%	<u>109.8%</u>	17.8%	19.8%	45.8%
	960668 960669 960670 960671 960672 960673 960674 960675 960676 960677 960678 960679 960680	960668 25.9 960669 29.9 960670 32.3 960671 30.5 960672 25.4 960673 30.4 960674 35.5 960675 31.0 960676 20.0 960677 25.7 960678 30.5 960679 37.2 960680 30.8	960668 25.9 <.100 960669 29.9 <.100	960668 25.9 <.100 49.7 960669 29.9 <.100	960668 25.9 <.100 49.7 43.1 960669 29.9 <.100	960668 25.9 <.100 49.7 43.1 1604 960669 29.9 <.100	960668 25.9 <.100 49.7 43.1 1604 13.8 960669 29.9 <.100	960668 25.9 <.100 49.7 43.1 1604 13.8 39.2 960669 29.9 <.100	960668 25.9 <.100 49.7 43.1 1604 13.8 39.0 2.45 960668 29.9 <.100	960668 25.9 <.100 49.7 43.1 1604 13.8 39.2 2.18 14.5 960669 29.9 <.100

.

Analyses performed by OCHD.

SAMPLE COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic			Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	
03/10/97	970134	22.9	0.110	49.6	35.7	660	8.24	30.7	1.85	17.7	4322
03/10/97	970135	17.5	<.100	29.0	30.2	622	5.66	30.3	1.60	14.8	4220
03/11/97	970136	14.2	0.600	24.0	41.1	828	6.55	38.5	1.18	14.9	4308
03/11/97	970137	12.9	0.170	30.3	36.3	717	6.28	35.4	1.28	11.9	2450
03/12/97	970138	15.0	0.160	33,9	41.4	841	9.45	30.3	1.50	12,4	3658
03/12/97	970139	12.2	<.100	48.2	74.4	1009	5.15	60.9	1.23	96.4	1943
03/13/97	970140	16.3	<.100	29.0	44.2	502	5.81	37.1	1.60	13.3	3563
03/13/97	970141	14.1	<.100	28.5	42.4	682	7.34	31.1	1.04	10.0	2906
03/14/97	970142	14.2	0.110	29.8	46.9	668	4.16	36.3	1.55	12.2	3377
03/14/97	970143	12.5	<.100	28.1	59.8	530	8.19	58.4	0.88	16.4	3648
03/15/97	<u>9701</u> 44	17.7	<.100	32.9	60.7	684	7.73	60.7	1.37	15.0	3832
03/15/97	970145	16.5	0.140	26.0	56.0	629	5.4	56.0	0.75	16.0	7786
03/16/97	970146	14.9	<.100	20.4	41.3	495	7.14	49.5	1.70	9.8	5291
03/16/97	970147	11.5	<.100	35.8	64.5	1047	6.54	64.5	0.67	14.6	
							0.01	01.0	0.07	14.0	<u>557</u> 6
AVERAGE STANDARD DEVI	ATION	15.2	0.22	31.8	48.2	708	6.69	44.3	1.30	19.7	4063
COEFFICIENT OF		2.8 18.7%	0.16	7.9	12.3	164	1.37	12.8	0.35	21.4	1398
		10.770	72.4%	24.9%	25.5%	23.1%	20.5%	28.9%	26.9%	108.8%	34.4%
Analyses performed by	OCHD.										
09/15/97	970698	43.3	<.100	34.1	54.9	3932	5.84	42.2	1.20	21.2	4982
09/15/97	970699	21,7	<.100	33.4	45.5	923	4.40	26.7	0.64	12.5	3820
09/16/97	970700	32.5	0.290	30.2	53.2	1012	3.61	32.5	0.92	20.7	
09/16/97	970701	22.9	<.100	26.2	37.3	1023	5.18	19.4	0.67		4634
09/17/97	970702	40.5	<.100	31.8	44.1	968	5.72	28.1	0.86	16.3	3834
09/17/97	970703	22.1	<.100	33,4	40.4	1051	4.91			17.8	4583
09/18/97	970704	22.2	<.100	27.1	69.5	1014	5.33	36.8	0.61	10.5	4584
09/18/97	970705	24.5	<.100	21.8	34.7	1014		32.9	0.86	17.5	3617
09/19/97	970706	25.3	<.100	32.6	46.7		12.5	14.7	0.82	11.8	3296
09/19/97	970707	22.2	0.140	30.4		1911	7.91	33.6	0.72	14.8	4041
			0.140	30.4	60.2	1481	6.75	28.7	0.60	13.0	4152
AVERAGE		27.7	0.22	30.1	48.7	1440	6.21	29.6	0.70	4	
STANDARD DEVI	ATION	7.7	0.09	3.7	10.2	880	2.38	7.6	0.79	15.6	4154
COEFFICIENT OF	VARIATION	27.8%	42.9%	12.4%	21.1%	61.1%	38.2%	25.8%	22.2%	3.5 22.5%	<u> 504</u> 12.1%
nalyses performed by	OCHD.									<u>~~.</u> /0	12,170

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
02/23/98	980126	14.8	<0.50	26.6	41.3	700	11.6	95.0	<0.25	25.0	3100
02/23/98	980127	16.6	< 0.50	30.1	36.9	1760	6.50	75.8	<0.25	15.6	9140
02/24/98	980128	12.6	< 0.50	24.2	28.4	740	7.70	23.8	<0.25	13.4	2820
02/24/98	980129	9.60	<0.50	23.0	35.8	610	9.30	23.8	<0.25	16.8	2610
02/25/98	980130	7.60	<0.50	23.8	44.2	510	5.30	46.7	<0.25	17.2	2520
02/25/98	980131	6.70	<0.50	21.6	32.5	540	9.70	26.2	<0.25	13.4	3050
02/26/98	980132	12.4	<0.50	24.8	68.2	730	10.0	42.7	<0.25	22.4	3350
02/26/98	980133	6.60	< 0.50	19.7	44.2	580	5.44	47.0	<0.25	12.1	2210
02/27/98	980134	7.60	<0.50	27.4	39.4	460	2.93	46.4	<0.25	13.8	2220
02/27/98	980135	7.40	<0.50	21.4	41.2	7200	10.5	35.8	<0.25	12.6	2310
02/27/98**	980135-RPT					761					
VEDAGE											_
VERAGE		10.2	N/A	24.3	41.2	1383	7.90	46.3	N/A	16.2	3333
TANDARD DEV		3.5	N/A	3.0	10.2	1971	2.64	21.9	N/A	4.1	1971
OEFFICIENT O	F VARIATION	34%	N/A	12%	25%	143%	33%	47%	N/A	25%	59%

Analyses performed by CES.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
10/26/98	980808	29.8	0.80	26.6	47.7	852	6.95	49.9	<0.99		
10/26/98	980809	23.6	0.52	26.4	47.1	776	6.40	41.6		33.0	3558
10/27/98	980810	36.0	0.74	28.0	138.6	1417	6.90		<1.00	31.6	3926
10/27/98	980811	25.3	0.66	31.9	49.3	14800		199.4	<2.47	36.2	3565
10/28/98	980812	32.9	0.65	30.6	49.3		6.88	40.2	<0.98	26.3	4024
10/28/98	980813	22.8	0.44			1525	8.01	32.7	<0.98	30.7	3311
10/29/98	980814	37.8		29.1	52.4	1184	7.18	61.3	<0.96	30.1	3604
10/29/98	980815		0.64	33.2	62.5	996	9.20	54.0	<1.00	32.0	1429
10/30/98	980816	31.1	0.69	30.4	44.9	2633	14.0	17.0	<0.98	26.3	3788
10/30/98		29.8	0.52	22.8	37.1	740	7.32	41.1	<2.51	41.6	3110
10/30/96	980817	30.6	0.51	22.1	34.6	1100	6.14	58.0	<1.00	27.4	3892
VERAGE		30.0	0.00	00.4							
TANDARD DEVI	ATION	4.7	0.62	28.1	55.7	2602	7.90	59.5	N/A	31.5	3421
OEFFICIENT OF	VARIATION	16%	0.11	3.5	28.6	4100	2.20	48.2	N/A	4.5	716
				12/0	51%	158%	28%	81%	N/A	14%	21%

Analyses performed by ELS.

.

DATE 04-19-99 04-19-99 04-20-99 04-20-99 04-21-99 04-21-99 04-21-99 04-22-99 04-22-99 04-22-99 04-23-99 04-23-99	# 990215 990216 990217 990218 990219 990220 990221 990222	Arsenic 30.4 22.7 26.0 20.8 28.6 29.6 24.1	Beryllium <0.50 <0.50 <0.50 <0.49 <0.50	29.4 32.8 29.3 34.2	Chromium 50.1 114 47.0	760 1860	Mercury 4.56 3.83	Nickel 73.0 33.9	1.28	Vanadium 30.9	<u>Zinc</u> 2864
04-19-99 04-20-99 04-20-99 04-21-99 04-21-99 04-22-99 04-22-99 04-23-99	990216 990217 990218 990219 990220 990221	22.7 26.0 20.8 28.6 29.6	<0.50 <0.50 <0.49 <0.50	32.8 29.3 34.2	<u>114</u> 47.0	1860	1			30.9	2864
04-20-99 04-20-99 04-21-99 04-21-99 04-22-99 04-22-99 04-23-99	990217 990218 990219 990220 990221	26.0 20.8 28.6 29.6	<0.50 <0.49 <0.50	29.3 34.2	47.0		3.83	33.0	ا مدد ا		
04-20-99 04-21-99 04-21-99 04-22-99 04-22-99 04-22-99 04-23-99	990218 990219 990220 990221	20.8 28.6 29.6	<0.49 _<0.50	34.2				00.0	1.16	36.5	9523
04-21-99 04-21-99 04-22-99 04-22-99 04-23-99	990219 990220 990221	28.6 29.6	<0.50			728	3.83	62.1	1.28	32.3	2730
04-21-99 04-22-99 04-22-99 04-23-99	990220 990221	29.6			49.0	652	5.60	31.8	1.36	20.0	2920
04-22-99 04-22-99 04-23-99	990221		-0 A0	36.2	51.4	885	5.77	1509	1.50	27.7	3863
04-22-99 04-23-99		24.1	<0.49	44.2	227	828	5.24	44.0	1.75	32.3	3808
04-23-99	990222		<0.49	35.3	44.5	1029	4.13	39.0	0.89	31.5	2916
		26.8	<0.49	38.9	58.0	1123	5.04	30.7	1.15	23.6	3362
04-23-99	990223	30.2	<0.50	40.2	51.6	848	4.80	29.3	1.68	30.0	3360
and the second se	990224	23.9	<0.49	33.6	53.1	939	5.54	43.0	1.31	23.4	3303
			_						1.01	20.4	3303
	0.1	26.3	N/A	35.4	74.6	965	4.83	190	1.34	28.8	3865
STANDARD DEVIATIO		3.2	N/A	4.4	54.4	327	0.69	440	0.24	4.8	1922
OCENTIONENT OF VA	MATION	12.2%	N/A	12.6%	72.9%	33.8%	14.3%	232.1%	18.2%	16.7%	49.7%
Analyses performed by ELS	990747	29.6	<2.53	20.0	00.4	700					
	990748	30.9		29.9	60.1	789	5.73	241	<u> <2.53 </u>	37.0	3176
	990749		<2.56	30.2	48.6	802	5.47	268	3.48	30.6	3302
		33.1	<2.43	31.5	53.4	1026	4.70	64.7	<2.43	48.6	3139
	<u>990750</u>	24.0	<2.45	32.1	60.1	698	5.44	48.9	<2.45	34.6	2923
	990751	25.2	<2.48	30.5	64.2	848	<u>4.51</u>	60.0	<2.48	40.4	3308
	990752	25.8	<2.48	36.2	51.8	1425	5.30	43.7	<2.48	27.0	3383
	<u>990753</u>	28.2	<2.42	31.2	45.7	928	5.12	38.1	<2.42	48.0	3042
	990754	24.4	<2.41	33.3	49.3	876	7.45	43.1	<2.41	30.1	3416
	990755	23.5	<2.45	27.5	50.0	700	6.22	39.5	<2.45		
11-12-99	990756	25.4	<2.43	38.8	42.4	920	6.85	171	<2.43	28.9	2743
VERAGE				يا جي پيد همي بنندا هم			0.00		~2.43	24.8	3815
TANDARD DEVIATIO		27.0	N/A	32.1	52.6	901	5.68	102	3.48	35.0	2005
OEFFICIENT OF VAL		3.1	N/A	3.1	6.6	200	0.88	85	0.00	8.0	<u>3225</u> 281
CE VAL	NATION	11.5%	N/A	9.7%	12.5%	22.2%	15.4%	83.7%	0.00	0.0	781

SAMPLE						_					
COLLECTION	LAB	As	Be	Cd	Cr	РЬ	Hg	Ni	Se	V	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium		Mercury	Nickel	-	Vanadium	Zinc
05/08/00	2000-0243	38.8	<0.49	35.5	58.8	1053.0	7.0	101.4	1.2	32.9	3120.0
05/08/00	2000-0244	28.6	<0.50	34.9	63.8	708.1	5.4	58.2	1.2	25.1	3385.2
05/09/00	2000-0245	73.4	<0.50	38.6	65.9	1112.0	8.6	247.2	2.6	24.9	5576.0
05/09/00	2000-0246	25.2	<0.50	31.4	92.8	761.3	6.2	117.8	0.9	23.1	3681.6
05/10/00	2000-0247	30.7	<0.25	33.5	55.9	693.8	6.1	39.8	0.9	23.4	5844.3
05/10/00	2000-0248	26.3	<0.50	34:5	61.4	792.0	6.6	47.2	1.1	22.8	2944.0
05/11/00	2000-0249	53.8	<0.50	39.5	106.1	721.7	10.4	290.0	1.5	31.9	3078.0
05/11/00	2000-0250	33.9	<0.50	32.4	51.6	850.2	5.7	29.6	<0.50	30.9	<u> </u>
05/12/00	2000-0251	25.5	<0.49	28.7	55.5	673.9	7.6	282.0	1.3	26.4	3649.8
05/12/00	2000-0252	35.1	<0.50	38.7	67.4	757.5	6.8	42.3	1.4	26.0	3157.5
								72.0		20.0	3137.3
AVERAGE		37.1	NA	34.8	67.9	812	7.02	126	1.23	26.7	3839
STANDARD DEV		14.6	NA	3.3	16.7	144	1.42	101	0.62	3.6	984
COEFFICIENT O	F VARIATION	39.2%	NA	9.5%	24.6%	17.7%	20.2%	80.1%	50.5%	13.4%	25.6%
Analyses performed b											
12/10/00	2000-0785	27.8	<0.51	28.1	42.2	1014.0	9.4	32.8	1.1	44.5	3127.8
12/11/00	2000-0786	15.8	<0.49	18.7	39.1	669.1	5.4	29.3	1.0	22.5	1903.5
12/11/00	2000-0787	23.1	<0.49	26.3	49.0	732.6	3.8	44.4	1.3	36.6	2656.6
12/12/00	2000-0788	21.1	<0.50	31.2	46.1	628.5	4.9	38.0	1.2	26.4	2956.5
12/12/00	2000-0789	14.3	<0.50	27.2	69.5	810.0	4.4	314.3	1.4	20.2	3630.0
12/13/00	2000-0790	14.9	<0.50	26.6	50.3	858.4	5.6	47.8	1.3	28.4	2634.4
12/13/00	2000-0791	14.5	<0.50	26.7	51.5	694.1	6.1	28.2	1.2	17.9	2190.4
12/14/00	2000-0792	21.1	<0.50	24.0	53.0	858.4	5.5	47.5	1.3	26.1	
12/14/00	2000-0793	19.1	<0.51	27.5	41.4	976.8	5.0	54.4	<u>1.5</u>		2205.2
12/15/00	2000-0794	21.0	<0.51	21.1	36.1	7528.0	4.3	26.1		22.4	3414.4
						1020.0	4.0	20.1	1.3	20.7	2160.0
AVERAGE		<u>19.3</u>	NA	25.7	47.8	1477	5.44	66.3	1.26	26.6	0000
STANDARD DEVI	ATION	4.2	NA	3.4	9.0	2021	1.47	83.2	0.16	7.8	2688
COEFFICIENT OF	VARIATION	21.7%	NA	13.2%	18.8%	136.8%	27.0%	125.5%	12.6%	<u>7.8</u> 29.4%	553
nalvses performed by	—									23,470	20.6%

SAMPLE						·					
	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium		Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
03/19/01	01-0167	8.2	0.24	20.6	40.7	627.8	2.3	36.6	0.6	18.6	1941.8
03/19/01	01-0168	6.0	0.35	14.5	48.7	777.6	2.1	21.1	0.7	16.6	1764.0
03/20/01	01-0169	9.2	0.21	20.2	36.6	609.8	3.8	23.5	1.2	15.2	1672.5
03/20/01	01-0170	11.2	0.22	17.3	38.6	427.4	2.0	34.6	1.1	15.1	1686.3
03/21/01	01-0171	9.0	<0.10	17.7	25.9	352.7	3.2	24.8	1.0	11.8	1601.6
03/21/01	01-0172	7.7	0.25	19.6	33.6	419.0	4.1	26.8	1.2	19.7	4737.7
03/22/01	01-0173	10.9	0.24	29.0	61.5	522.2	3.3	67.2	0.8	22.0	1981.0
03/22/01	01-0174	6.7	0.30	18.0	36.5	413.9	3.8	51.5	1.0	21.8	1701.0
03/23/01	01-0175	8.6	<0.10	13.7	28.9	674.3	2.9	36.0	2.6	21.4	2010.0
03/23/01	01-0176	8.4	0.20	24.3	28.9	549.8	3.3	44.7	1.0	14.6	1990.6
									L	14.0	1000.0
AVERAGE STANDARD DEV		8.6	0.201	19.5	38.0	537.4	3.1	36.7	1.1	17.7	2108.7
COEFFICIENT O		1.5	0.1	4.3	10.0	128.7	0.7	13.7	0.5	3.4	888.3
OOLI HOILINI O		18.0%	19.1%	22.0%	26.4%	24.0%	23.2%	37.4%	47.2%	19.0%	42.1%
Analyses performed b	w FLS										
	, LLO.										
12/10/01	01-0777	35.3	<0.5005	44.9	33.0	2895.2	5.9	40.0	2.0	00.0	0767.0
12/10/01	01-0778	18.5	<0.4928	25.9	30.5	517.4	6.0	40.0 21.3	2.9	29.0	3757.6
12/11/01	01-0779	20.7	<0.4968	42.5	45.6	864.0			1.5	24,8	2610.3
12/11/01	01-0780	21.8	<1.28	33.9	48.0		6.7	35.6	2.0	22.3	3340.8
12/12/01	01-0781	19.8	<0.5106	27.6		755.2	4.9	38.6	2.3	22.8	4032.0
12/12/01	01-0782	24.9	<0.5022		39.9	591.3	4.1	48.0	2.7	30.9	2812.0
12/13/01	01-0783	24.9		37.9	33.9	781.7	6.2	35.2	3.2	23.3	3677.4
12/13/01	01-0784		<0.504	40.5	30.7	652.0	5.3	32.6	2.2	26.8	3112.0
12/14/01		24.1	<0.5175	35.0	33.7	1305.0	2.1	40.0	2.2	21.1	2925.0
12/14/01	01-0785	33.8	<0.5041	73.8	35.4	1178.6	1.9	27.3	2.9	. 28.7	3968.9
12/14/01		107		044	101	4000.4	1.3	<u> </u>			
	01-0786	13.7	<0.4964	24.1	43.4	1080.4	1.3	32.3	1.6	39.3	2233.8
AVERAGE										39.3	2233.8
AVERAGE STANDARD DEVI	IATION	23.8	NA	38.6	37.4	1062.1	4.4	35.1	2.4	26.9	2233.8 3247.0
	IATION										

Analyses performed by ELS.

SAMPLE			1						1	\$	
COLLECTION	LAB	As	Be	Cd	Сг	Pb					_
DATE	#	Arsenic	Beryllium		Chromium	Lead	Hg Mercury	Ni Nickel	Selenium	V Vanadium	Zn
05/06/02	02-0241	23.9	<0.4836	29.3	48.7	710.6	4.5	71.3	1.4		
05/06/02	02-0242	19.7	<0.4928	22.3	44.3	563.6	2.2		1	30.3	2581.8
05/07/02	02-0243	38.8	<0.5002	42.6	<u>45.6</u>	768.3	F	61.2	1.2	24.1	2795.1
05/07/02	02-0244	22.8	<0.5124	41.7	45.6 95.8		4.5	38.8	1.6	24.0	3526.0
05/08/02	02-0245	22.2	<0.5025	43.0	<u>95.8</u> 59.3	<u>646.0</u> 900.0	6.8	55.7	1.2	27.6	3368.4
05/08/02	02-0246	18.6	<0.5135	24.1			5.8	52.7	1.5	28.5	3825.0
05/09/02	02-0247	29.2	<0.4977		52.8	659.7	1.9	60.8	0.6	24.2	2449.0
05/09/02	02-0248			26.9	55.9	770.3	3.4	29.8	0.9	23.9	2180.4
05/10/02	02-0248	18.6	<0.4898	18.7	36.7	593.3	2.3	28.1	0.9	18.5	2061.9
05/10/02	02-0249	34.1	<0.4940	32.2	41.9	693.1	5.7	26.8	1.8	23.8	2781.6
00/10/02	02-0250	43.6	<0.5092	45.5	55.6	731.1	5.2	29.9	1.9	24.5	3792.4
				20.0	53.6	703.6	4.2	45.5			
VERAGE		272	ι ΝΔ ι							2/0 1	2936.2
	IATION	<u>27.2</u> 8.5	NA NA	32.6 9.3	and the second se		the second s	45.5	1.3	24.9	
AVERAGE STANDARD DEV COEFFICIENT OF malyses performed by	VARIATION	27.2 8.5 31.1%	NA NA NA	9.3 28.6%	15.5 29.0%	92.3 13.1%	1.6 38.5%	45.5 15.8 34.7%	0.4 30.7%	3.1 12.3%	616.5
STANDARD DEV COEFFICIENT OF malyses performed by	VARIATION	8.5 31.1%	NA NA	9.3 28.6%	15.5 29.0%	92.3 13.1%	1.6 38.5%	15.8 34.7%	0.4 30.7%	3.1 12.3%	
STANDARD DEV COEFFICIENT OF malyses performed by 12/02/02	VARIATION (ELS. 02-0767	8.5 31.1% 33.5	NA NA <1.005	9.3 28.6% 43.2	15.5 29.0% 45.7	92.3 13.1% 982.5	1.6 38.5% 4.5	<u>15.8</u> 34.7% 42.6	0.4 30.7% 1.8	3.1	616.5
STANDARD DEV COEFFICIENT OF nalyses performed by 12/02/02 12/02/02	VARIATION ELS. 02-0767 02-0768	8.5 31.1% 33.5 16.6	NA NA <1.005 <1.0184	9.3 28.6% 43.2 24.6	15.5 29.0% 45.7 35.6	92.3 13.1% 982.5 716.7	1.6 38.5% 4.5 4.1	15.8 34.7%	0.4 30.7%	3.1 12.3%	616.5 21.0% 4035.0
DEFFICIENT OF DEFFICIENT OF nalyses performed by 12/02/02 12/02/02 12/03/02	VARIATION /ELS. 02-0767 02-0768 02-0769	8.5 31.1% 33.5 16.6 23.2	NA NA <1.005 <1.0184 <1.0164	9.3 28.6% 43.2 24.6 24.3	15.5 29.0% 45.7 35.6 30.7	92.3 13.1% 982.5 716.7 890.4	1.6 38.5% 4.5	<u>15.8</u> 34.7% 42.6	0.4 30.7% 1.8	3.1 12.3% 34.0	616.5 21.0% 4035.0 2295.2
TANDARD DEV COEFFICIENT OF nalyses performed by 12/02/02 12/02/02 12/03/02 12/03/02	VARIATION (ELS. 02-0767 02-0768 02-0769 02-0770	8.5 31.1% 33.5 16.6 23.2 16.8	NA NA <1.005 <1.0184 <1.0164 <0.9860	9.3 28.6% 43.2 24.6 24.3 26.6	15.5 29.0% 45.7 35.6	92.3 13.1% 982.5 716.7	1.6 38.5% 4.5 4.1	15.8 34.7% 42.6 66.2	0.4 30.7% 1.8 <1.0184	3.1 12.3% 34.0 29.0	616.5 21.0% 4035.0 2295.2 2041.2
COEFFICIENT OF 000000000000000000000000000000000000	VARIATION /ELS. 02-0767 02-0768 02-0769 02-0770 02-0771	8.5 31.1% 33.5 16.6 23.2 16.8 26.0	NA NA <1.005 <1.0184 <1.0164 <0.9860 <0.4964	9.3 28.6% 43.2 24.6 24.3	15.5 29.0% 45.7 35.6 30.7	92.3 13.1% 982.5 716.7 890.4	1.6 38.5% 4.5 4.1 9.1	15.8 34.7% 42.6 66.2 26.5	0.4 30.7% 1.8 <1.0184 1.1	3.1 12.3% 34.0 29.0 29.5	616.5 21.0% 4035.0 2295.2 2041.2 2638.4
COEFFICIENT OF DEFFICIENT OF Data Stress performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02	VARIATION /ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772	8.5 31.1% 33.5 16.6 23.2 16.8 26.0 23.2	NA NA <1.005 <1.0184 <1.0164 <0.9860 <0.4964 <0.4968	9.3 28.6% 43.2 24.6 24.3 26.6	15.5 29.0% 45.7 35.6 30.7 32.6	92.3 13.1% 982.5 716.7 890.4 590.2	1.6 38.5% 4.5 4.1 9.1 6.0	15.8 34.7% 42.6 66.2 26.5 22.9	0.4 30.7% 1.8 <1.0184 1.1 <0.986	3.1 12.3% 34.0 29.0 29.5 55.8	616.5 21.0% 4035.0 2295.2 2041.2 2638.4 2460.1
TANDARD DEV COEFFICIENT OF malyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02	VARIATION /ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773	8.5 31.1% 33.5 16.6 23.2 16.8 26.0 23.2 23.7	NA NA <1.005 <1.0184 <1.0164 <0.9860 <0.4964 <0.4968 <0.5112	9.3 28.6% 43.2 24.6 24.3 26.6 29.5	15.5 29.0% 45.7 35.6 30.7 32.6 42.1	92.3 13.1% 982.5 716.7 890.4 590.2 1649.8	1.6 38.5% 4.5 4.1 9.1 6.0 4.7	15.8 34.7% 42.6 66.2 26.5 22.9 36.1	0.4 30.7% 1.8 <1.0184 1.1 <0.986 1.5 1.5	3.1 12.3% 34.0 29.0 29.5 55.8 22.7 21.3	616.5 21.0% 4035.0 2295.2 2041.2 2638.4 2460.1 2187.3
COEFFICIENT OF COEFFICIENT OF malyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/04/02 12/05/02	VARIATION /ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774	8.5 31.1% 33.5 16.6 23.2 16.8 26.0 23.2 23.7 22.3	NA NA <1.005 <1.0184 <1.0164 <0.9860 <0.4964 <0.4968	9.3 28.6% 43.2 24.6 24.3 26.6 29.5 31.3	15.5 29.0% 45.7 35.6 30.7 32.6 42.1 33.5	92.3 13.1% 982.5 716.7 890.4 590.2 1649.8 1255.8	1.6 38.5% 4.5 4.1 9.1 6.0 4.7 13.7	15.8 34.7% 42.6 66.2 26.5 22.9 36.1 38.4 39.2	0.4 30.7% 1.8 <1.0184 1.1 <0.986 1.5 1.5 2.0	3.1 12.3% 34.0 29.0 29.5 55.8 22.7 21.3 23.5	616.5 21.0% 4035.0 2295.2 2041.2 2638.4 2460.1 2187.3 3038.4
TANDARD DEV COEFFICIENT OF nalyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/03/02 12/04/02 12/05/02 12/05/02 12/06/02	VARIATION /ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775	8.5 31.1% 33.5 16.6 23.2 16.8 26.0 23.2 23.7 22.3 23.5	NA NA <1.005 <1.0184 <1.0164 <0.9860 <0.4964 <0.4968 <0.5112	9.3 28.6% 43.2 24.6 24.3 26.6 29.5 31.3 43.8	15.5 29.0% 45.7 35.6 30.7 32.6 42.1 33.5 35.8	92.3 13.1% 982.5 716.7 890.4 590.2 1649.8 1255.8 1605.6	1.6 38.5% 4.5 4.1 9.1 6.0 4.7 13.7 8.8	15.8 34.7% 42.6 66.2 26.5 22.9 36.1 38.4 39.2 42.1	0.4 30.7% 1.8 <1.0184 1.1 <0.986 1.5 1.5 2.0 1.5	3.1 12.3% 34.0 29.0 29.5 55.8 22.7 21.3 23.5 23.7	616.5 21.0% 4035.0 2295.2 2041.2 2638.4 2460.1 2187.3 3038.4 2438.2
TANDARD DEV COEFFICIENT OF nalyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02	VARIATION /ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774	8.5 31.1% 33.5 16.6 23.2 16.8 26.0 23.2 23.7 22.3	NA NA <1.005 <1.0184 <1.0164 <0.9860 <0.4964 <0.4968 <0.5112 <0.5256	9.3 28.6% 43.2 24.6 24.3 26.6 29.5 31.3 43.8 31.8	15.5 29.0% 45.7 35.6 30.7 32.6 42.1 33.5 35.8 38.9	92.3 13.1% 982.5 716.7 890.4 590.2 1649.8 1255.8 1605.6 1357.8	1.6 38.5% 4.5 4.1 9.1 6.0 4.7 13.7 8.8 7.2	15.8 34.7% 42.6 66.2 26.5 22.9 36.1 38.4 39.2	0.4 30.7% 1.8 <1.0184 1.1 <0.986 1.5 1.5 2.0 1.5 1.5 1.1	3.1 12.3% 34.0 29.0 29.5 55.8 22.7 21.3 23.5 23.7 25.7	616.5 21.0% 4035.0 2295.2 2041.2 2638.4 2460.1 2187.3 3038.4 2438.2 2214.0
TANDARD DEV COEFFICIENT OF analyses performed by 12/02/02 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/05/02 12/05/02 12/06/02	VARIATION /ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775	8.5 31.1% 33.5 16.6 23.2 16.8 26.0 23.2 23.7 22.3 23.5 15.7	NA NA <1.005 <1.0184 <1.0164 <0.9860 <0.4964 <0.4968 <0.5112 <0.5256 <0.5166 <0.4914	9.3 28.6% 43.2 24.6 24.3 26.6 29.5 31.3 43.8 31.8 28.7 15.7	15.5 29.0% 45.7 35.6 30.7 32.6 42.1 33.5 35.8 38.9 41.2 35.4	92.3 13.1% 982.5 716.7 890.4 590.2 1649.8 1255.8 1605.6 1357.8 1082.4 251.2	1.6 38.5% 4.1 9.1 6.0 4.7 13.7 8.8 7.2 7.0 2.6	15.8 34.7% 42.6 66.2 26.5 22.9 36.1 38.4 39.2 42.1 32.2	0.4 30.7% 1.8 <1.0184 1.1 <0.986 1.5 1.5 2.0 1.5	3.1 12.3% 34.0 29.0 29.5 55.8 22.7 21.3 23.5 23.7	616.5 21.0% 4035.0 2295.2 2041.2 2638.4 2460.1 2187.3 3038.4 2438.2 2214.0
TANDARD DEV COEFFICIENT OF malyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/03/02 12/04/02 12/05/02 12/05/02 12/06/02 12/06/02	VARIATION /ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0776	8.5 31.1% 33.5 16.6 23.2 16.8 26.0 23.2 23.7 22.3 23.5 15.7 22.4	NA NA <1.005 <1.0184 <1.0164 <0.9860 <0.4964 <0.4968 <0.5112 <0.5256 <0.5166 <0.5166 <0.4914	9.3 28.6% 43.2 24.6 24.3 26.6 29.5 31.3 43.8 31.8 28.7 15.7 29.9	15.5 29.0% 45.7 35.6 30.7 32.6 42.1 33.5 35.8 38.9 41.2 35.4 37.1	92.3 13.1% 982.5 716.7 890.4 590.2 1649.8 1255.8 1605.6 1357.8 1082.4 251.2 1038.2	1.6 38.5% 4.5 4.1 9.1 6.0 4.7 13.7 8.8 7.2 7.0 2.6 6.8	15.8 34.7% 42.6 66.2 26.5 22.9 36.1 38.4 39.2 42.1 32.2 28.3 37.4	0.4 30.7% 1.8 <1.0184 1.1 <0.986 1.5 1.5 2.0 1.5 1.5 1.1	3.1 12.3% 34.0 29.0 29.5 55.8 22.7 21.3 23.5 23.7 25.7	616.5 21.0% 4035.0 2295.2 2041.2 2638.4 2460.1 2187.3 3038.4 2438.2 2214.0 1154.4
TANDARD DEV COEFFICIENT OF analyses performed by 12/02/02 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/05/02 12/05/02 12/06/02	VARIATION /ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0775	8.5 31.1% 33.5 16.6 23.2 16.8 26.0 23.2 23.7 22.3 23.5 15.7	NA NA <1.005 <1.0184 <1.0164 <0.9860 <0.4964 <0.4968 <0.5112 <0.5256 <0.5166 <0.4914	9.3 28.6% 43.2 24.6 24.3 26.6 29.5 31.3 43.8 31.8 28.7 15.7	15.5 29.0% 45.7 35.6 30.7 32.6 42.1 33.5 35.8 38.9 41.2 35.4	92.3 13.1% 982.5 716.7 890.4 590.2 1649.8 1255.8 1605.6 1357.8 1082.4 251.2	1.6 38.5% 4.1 9.1 6.0 4.7 13.7 8.8 7.2 7.0 2.6	15.8 34.7% 42.6 66.2 26.5 22.9 36.1 38.4 39.2 42.1 32.2 28.3	0.4 30.7% 1.8 <1.0184 1.1 <0.986 1.5 1.5 2.0 1.5 1.5 1.1 1.0	3.1 12.3% 34.0 29.0 29.5 55.8 22.7 21.3 23.5 23.7 25.7 25.7 23.0	616.5 21.0% 4035.0 2295.2 2041.2 2638.4 2460.1 2187.3 3038.4 2438.2 2214.0

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
06/02/03	15503164	15.1	<0.504	15.1	100.8	5460.0	1.3	226.8	<0.504	23.5	1428.0
06/02/03	15503165	22.8	<0.501	22.8	44.6	637.0	1.3	91.0	<0.501	26.4	13650.0
06/03/03	15503166	11.4	<0.502	14.1	20.2	1056.0	1.1	11.4	<0.502	10.6	1320.0
06/04/03	16103027	22.3	<0.501	25.4	30.8	700.7	2.5	100.1	<0.501	23.1	2926.0
06/04/03	16103028	16.2	<0.502	15.3	28.9	272.0	7.0	22.1	<0.502	11.9	1445.0
06/05/03	16103029	37.2	<0.502	33.4	47.1	661.2	3.9	35.7	<0.502	36.5	3876.0
06/05/03	16103030	28.1	<0.503	24.8	48.2	522.6	5.2	20.1	<0.502	20.8	2345.0
06/06/03	16103031	30,4	< 0.504	30.4	43.2	600.0	3.4	40.0	< 0.504	33.6	2800.0
06/06/03	16103032	34.2	<0.502	35.0	50,9	699.2	4.3	64.6	<0.504	21.3	5472.0
06/07/03	16103026	58.2	<0.500	31.2	53.3	680.6	3.7	76.3	<0.500	32.0	4674.0
AVERAGE		27.6	NA	24.7	46.8	1128.9	3.4	68.8	I NA	24.0	3993.6
STANDARD DEVI		13.0	NA	7.4	20.7	1455.2	1.8	60.2	NA	8.1	3484.5
COEFFICIENT OF	VARIATION	47.0%	NA	30.1%	44.2%	128.9%	52.9%	87.5%	NA	34.0%	87.3%

Analyses performed by Upstate Laboratories Inc.

06/14/04	E1540	32.1	<1.0152	26.2	44.8	829.1	3.0	39.8	0.8	27.1	3553.2
06/14/04	E1541	25.9	<0.9812	22.3	42.8	651.2	1.2	25.0	0.7	20,5	2586.8
06/15/04	E1542	38.2	<1.0188	28.0	66.2	1273.5	2.5	55.2	1.1	43.3	3226.2
06/15/04	E1543	43.4	<10.2	38.3	85.0	935.0	6.5	102.0	<5.015	<50.2	3400.0
06/16/04	E2029	33.0	<1.0164	38.1	52.5	931.7	5.0	52.5	1.3	30.5	3642.1
06/16/05	E2030	31.2	<1.014	37.4	45.2	1014.0	3.0	319.8	2.0	22.6	3978.0
06/17/05	E2031	26.0	<1.0068	32.7	56.2	662.8	3.6	36.9	1.3	25.2	3523.8
06/23/04	E2626	27.5	<0.9984	31.6	56.6	807.0	3.8	35.8	1.8	25.0	3244.8
06/25/04	E2627	45.8	<0.975	73.5	63.8	1425.0	5.6	82.5	1.7	25.5	5850.0
06/27/04	E2628	44.7	<0.9924	65.3	62.0	992.4	3.2	48.0	1.7	34.7	3721.5
VERAGE		34.8	NA	39.4	57.5	952.2	3.8	79.7	1.2	25.4	3672.6
TANDARD DEVI		7.3	NA	15.9	12.0	233.1	1.5	83.0	0.6	10.6	806.8
OEFFICIENT OF	VARIATION	21.1%	NA	40.5%	20.9%	24.5%	39.5%	104.1%	46.4%	41.5%	22.0%

Analyses per	formed by O' Brien & Gere Laboratories, Inc	

				12.370	23.2%	43.7%	53.4%	51.8%	17.1%	25.0%	15.4%
DEFFICIENT OF	VARIATION	15.5%	NA	12.3%	11.0 23.2%	412.6	3.0	23.4	0.2	6.5	550.9
ANDARD DEV	IATION	2.8	NA	4.2		943.4	5.6	45.2	1.44	25.8	3585.8
ERAGE		18.3	NA I	34.2	47,4	0404					
		10.0	1 -0.9084	34.7	51.6	637.5	3.4	45.2	1.4	22.6	3470.1
12/30/04	F1520	18.6	<0.9684					27.6	0.8	18.7	2926.8
12/30/04	F1519	14.6	<0.9756	35.0	33.3	626.0	4.9				3670.8
12/29/04	F1518	21.5	<1.0374	42.3	51.9	1436.4	4.5	46.3	1.3	28.7	
12/29/04	F1517	19.0	<0.9888	33.8	39.6	824.0	3.5	28.8	1.0	33.8	3213.6
	F1516	17.9	<1.0024	35.8	48.0	615.8	4.2	70.2	1.0	17.2	3150.4
12/28/04		14.9	<0.9698	29.8	74.6	1119.0	4.6	33.6	0.7	32.8	3058.6
12/28/04	F1515		<0.9672	28.2	47.6	660.9	7.3	104.8	1.5	24.2	4836.0
12/27/04	F1514	20.2			43.9	1052.4	14.0	38.6	0.9	36.8	4034.2
12/27/04	F1513	23.7	<0.9647	38.6				27.9	1.1	21.1	3468.4
12/23/04	F1434	17.3	<0.9802	35.4	49.0	1885.0	5.4				4029.0
12/23/04	F1433	15.0	<1.027	28.4	34.8	576.7	4.3	29.2	0.7	22.1	4020 0

Analyses performed by O' Brien & Gere Laboratories, Inc

-

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
05/16/05	0505100-001A	46,3	<0.9977	46.3	58.0	1542	3.6	39.0	1,4	47.2	5623
05/16/05	0505100-002A	45.0	<0.9648	39.4	59.5	1045	3.5	39.4	1.4	37.0	4904
05/17/05	0505100-003A	44.9	<0.9867	50.2	71.8	1704	3.9	82.5	1.5	29.6	5292
05/17/05	0505100-004A	61.5	<1.0104	63.2	69.9	2021	4.0	64.8	1.8	31,2	6399
05/18/05	0505131-001A	48.9	<0.9614	54.2	73.4	1311	4.1	81.3	1.6	34.1	5419
05/18/05	0505131-002A	37.9	<1.0104	52.2	60.6	1768	4.0	41.3	1.7	26.9	4968
05/19/05	0505131-003A	36.7	<0.9996	48.3	54.1	1166	4.1	40.8	1.2	29.2	4498
05/19/05	0505131-004A	47.7	<0.9708	55.0	57,4	1294	4.8	44.5	1.4	29.1	5663
05/20/05	0505131-005A	40.1	<0.9612	48.1	48.1	1282	0.6	48.9	0.9	37.6	4886
05/20/05	0505131-006A	42.6	<0.9636	61.8	112.4	1445	4.9	216.8	1.5	24.1	6103
AVERAGE		45.1	NA	51.9	66.5	1457.9	3.7	60.0	1 4 4 1		
STANDARD DEV		6.7	NA	6.8	17.1	285.6	1.1	<u>69.9</u> 51.5	1.4 0.2	<u>32.6</u> 6.3	<u>5376</u> 559
COEFFICIENT O	F VARIATION	14.8%	NA	13.1%	25.7%	19.6%	30.2%	73.7%	16.6%	19.4%	10.4%

Analyses performed by Life Science Laboratories, Inc.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
12/12/05	0512118-001A	<u>24</u> .1	<0.9972	40.7	50.7	997	4.1	58.2	1.1	<99.72	6814
12/12/05	0512118-002A	18.3	<0.9932	28.3	45.8	1452	2.4	37.4	1.2	19.9	2903
12/13/05	0512118-003A	16.9	<1.0152	41.5	45.7	1184	3.3	195	0.7	31.3	3976
12/13/05	0512118-004A	20.9	<1.002	30.9	68.5	1086	<0.100	61.0	1.1	<50.1	3340
12/14/05	0603017-001A	13.6	<0.9789	27.1	39.9	1280	2.9	35.4	0.5		
12/14/05	0512118-006A	20.0	<0.9984	30.8	56.6	599	2.7	42.4	0.5	30.9	3313
12/15/05	0512142-001A	13.5	<1.0309	23.8	38.9	492	1.7	79.3	0.7	<49.92	3245
12/15/05	0512142-002A	21.8	< 0.9684	40.4	47.6	1049	4.4	29.9		<49.96	2775
12/16/05	0512142-003A	18.6	<1.0024	29.4	48.0	859	3.4	35.8	1.1	27.4	3793
12/16/05	0512142-004A	19.7	< 0.9854	41.7	40.9	834			1.4	<50.12	2936
					40.0	0.04	4.2	30.3	1.7	25.8	4321
		18.7	NA	33,4	48.3	983.2	3.2	60,4	1.0	27.0	07/0
STANDARD DEV	ATION	3.2	NA	6.5	8.4	281.1	0.8	47.2	0.3	<u> 27.0</u> 4.2	<u>3742</u> 1127
SOLT TOLENT OF		<u>1</u> 7.1%	NA	19.5%	17.4%	28.6%	25.0%	78.1%	32.3%	15.6%	30.1%

SAMPLE COLLECTION DATE	LA8 #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
04/10/06	0604077-001A	40.8	<0.978	67.6	46.5	1467	2.0	35.9	1.47	27.7	5216
04/11/06	0604077-002A	47.5	<1.02	63.3	59.3	1345	6.0	36.4	1.11	24.5	4825
04/12/06	0604090-001A	27.9	<0.986	32.1	78.9	904	1.0	18.1	1.1	38.6	4274
04/13/06	0604090-002A	39.0	<0.995	50.6	42.3	995	3.3	69.6	1.58	45.6	4477
04/14/06	0604090-003A	40.5	<1.03	68.0	52.5	1292	8.5	38.7	1.00	25.8	4994
NA	NA										7334
NA	NA				1						
NA	NA										
NA	NA										
NA	NA										

AVERAGE		NA	56.3	55.9	1200.4	4.2	39.7	1,3	32.5	4757
STANDARD DEVIATION	6.3	NA	13.7	12.9	214.6	2.7	16.7	0.2	8.2	341
COEFFICIENT OF VARIATION	16.1%	NA	24.3%	23.0%	17.9%	65.8%	42.0%	15.6%	25.4%	7.2%

Analyses performed by Life Science Laboratories, Inc

.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V	Zn
08/07/06	0608136-001A	42.7	<1.01	39.4	38.5	838	2.8	117.3	1.01	28.5	<u>Zinc</u> 3687
08/08/06	0608136-002A	41.3	<0.972	43.7	41.3	1133	4.0	35.6	1.21	27.5	4288
08/09/06	0608136-003A	22.0	<0.984	25.7	28.8	477	3.0	22.7	0.72	25.0	2271
08/10/06	0608136-004A	33.3	<1.00	40.0	47.5	1583	2.4	108.3	1.00	37.5	3332
08/11/06	0608136-005A	28.2	<0.968	33.9	57.3	888	1.0	36.3	0.61	48.4	
08/14/06	0608136-006A	35.0	<1.03	35.0	54.9	795	2.4	67.6	0.95	40.4	3389
08/15/06	0608136-007A	28.9	<0.965	26.3	68,4	509	0.3	149.1	0.59	78.9	3101
08/16/06	0608136-008A	23.3	<0.962	24.9	28.9	553	< 0.096	44.9	0.54	30.5	2806
08/17/06	0608136-009A	27.9	<0.960	35.8	48.0	960	< 0.096	37.5	0.66	34.9	3449
08/18/06	0608136-010A	21.8	<0.970	26.7	46.1	2262	2.1	63.0	0.65	36.4	6635
									0.00		2747
		30.4	NA	33.1	46.0	999.8	3.2	68.2	0.8	27.0	2570
TANDARD DEV		7.1	NA	6.5	11.8	524.2	0.8	40.3	0.2	4.2	3570
OEFFICIENT O	VARIATION	23.4%	NA	19.6%	25.6%	52.4%	25.0%	59.0%	27.5%	4.2	<u>1149</u> 32.2%

SAMPLE COLLECTION DATE	LAB	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Seleníum	V Vanadium	Zn Zinc
04/23/07	0704181-001A	33.2	<0.996	42.3	51.5	1079	7.4	65.6	<0.996	27,4	3901
04/23/07	0704181-002A	30.5	<1.0152	54.1	43.1	1100	4.5	39.8	<1.0152	<u> </u>	4315
04/24/07	0704181-003A	32.6	<1.0032	58.5	49.3	1338	6.0	37.6	<1.0032	21.7	11704
04/24/07	0704181-004A	40.8	<0.9646	89.0	54.9	1336	5,0	39.3	1.558	17.8	6233
04/25/07	0704181-005A	45.0	<1.015	94,3	54.4	1450	6.9	44.2	1.667	17.4	6018
04/25/07	0704181-006A	36.2	<1.0244	62.3	63.8	1340	3.6	62.3	<1.0244	21.3	4728
04/26/07	0704186-001A	40.8	<0.9997	100	47.7	1615	5.9	56.1	1.307	17.7	6537
04/26/07	0704186-002A	34.4	<0.9945	66.6	65.8	1301	3.7	133.1	0.995	19.9	5508
04/27/07	0704186-003A	34.1	<1.0088	59.8	201.8	1009	7.1	85.4	<1.0088	34.9	4501
04/27/07	0704186-004A	33.1	<0.9684	42.8	75.1	968	3.7	145.3	<0.9684	29.1	3874

AVERAGE	36.1	NA	67.0	70.7	1253	5.4	70.9	1.4	22.4	5732
STANDARD DEVIATION	4.4	NA	19.6	44.6	197	1.4	37.0	.0.3	5.8	2192
COEFFICIENT OF VARIATION	12.1%	NA	29.2%	63.1%	15.7%	25.8%	52.3%	18.7%	25.7%	38.2%
			· · · · ·							001270

Analyses performed by Life Science Laboratories, Inc

.

SAMPLE]	·····	
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercurv	Nickel		Vanadium	
08/09/07	0708082-001A	38.9	<0.972	38.9	52.7	2187	3.5	56.7	1.46	39.7	
08/10/07	0708082-002A	39.3	<1.0032	30.1	275.9	828	2.4	242	2.17	41.0	3240
08/14/07	0708121-001A	36.7	<1.002	45.9	43.4	919	4.3	91.9	1.67	30.9	<u>3344</u> 3925
08/14/07	0708121-002A	36.0	<0.96	45.6	55.2	1120	5.1	40.8	2.16	36.8	
08/15/07	0708121-003A	31.7	<0.9768	32.6	154.7	2035	2.4	130.2	1.79	34.2	4160
08/15/07	0708121-004A	50.7	<1.014	85.8	38.2	140	6.4	28.9	1.79		3337
08/16/07	0708121-005A	46.4	<5.031	54.2	44.1	759	5.6	92.9	<5.031	25.7	5694
08/16/07	0708121-006A	63.5	<1.0332	88.6	36.2	2509	8.9	26.6	1.99	<24.768	4102
08/17/07	0708121-007A	37.9	<1.0257	46.6	41.8	1026	4.6	31.6	1.81	22.9	6494
08/17/07	0708121-008A	49.4	<1.0005	52.7	35.4	934	4.9	23.3	1.47	32.3	4655
								20.0		19.3	4402
VERAGE		43.0	NA	52.1	77.7	1246	3.2	76.5	1.8	070	4005
TANDARD DEV		9.0	NA	19.0	74.2	708	0.8	65.0		27.0	4335
OEFFICIENT O	F VARIATION	20.8%	NA	36.5%	95.4%	56.8%	25.0%		0.2	4.2	1002
						00.070	20.070	84.9%	<u>13.6%</u>	15.6%	23.1%

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
04/25/08	0805009-001A	56.4	<1.0036	131.2	46,3	1775.6	10.0	26.2	1.2	27.0	7642.8
04/28/08	0805009-002A	76.3	<1.0068	83.9	42.0	1342.4	5.5	52.0	1.5	21.8	6040.8
04/29/08	0805009-003A	43.5	<0.966	37.8	58.0	885.5	2.4	161.0	<1.2	35.4	3783.5
04/29/08	0805009-004A	71.3	<1.0192	87.4	61.9	1674.4	7.1	56.8	1.4	27.7	5896.8
04/30/08	0805021-001A	37.8	<1.0244	48.1	69.3	1024.4	2.9	65.4	<1.3	38.6	3861.2
04/30/09	0805021-002A	60.6	<0.9841	83.3	83.3	1135.5	9.1	27.3	1.5	24.2	5904.6
05/01/08	0805021-003A	38.6	<0.9864	42.7	56.7	813.8	2.5	33.7	<1.2	36.2	3945.6
05/01/08	0805021-004A	71.8	<0.9828	98.3	43.8	1512.0	7.1	24.9	2.0	18.9	7560.0
05/02/08	0805021-005A	30.7	<0.9684	36.3	58.1	677.9	2.8	37.9	<1.2	31.5	5326.2
05/02/08	0805021-006A	56.6	<1.0218	69.2	52.7	1179.0	4.9	36.2	1.3	41.7	6523.8

AVERAGE	54.4	NA	71.8	57.2	1202	5.4	52.1	1.5	30.3	5649
STANDARD DEVIATION	15.2	NA	29.3	11.8	351	2.7	38.6	0.7	7.2	1355
COEFFICIENT OF VARIATION	28.0%	NA	40.8%	20.7%	29.2%	49.0%	74.0%	16.8%	23.7%	24.0%
										1.1070

Analyses performed by Life Science Laboratories, Inc

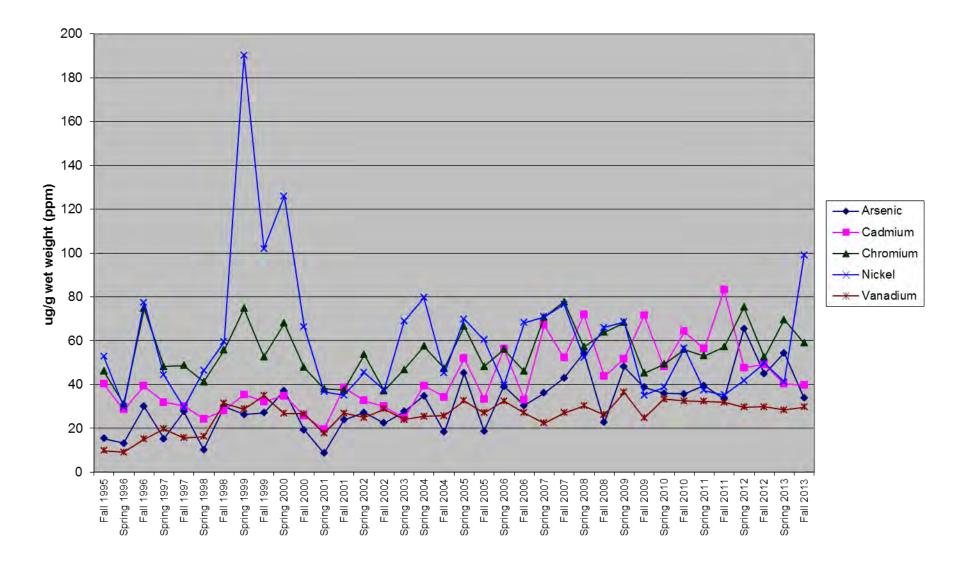
i

SAMPLE											
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	##	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel		Vanadium	
12/19/08	0812217-001A	23.7	<1.0066	48,9	65.4	1006.6	7.9	42.4	1.1	20.1	4242.1
12/19/08	0812217-002A	20.5	<1.0231	50.4	55.1	1495.3	6.1	60.6	1.2	18.1	3777.0
12/20/08	0812217-003A	25.7	<1.029	58.8	28.7	808.5	6.1	52.9	1.5	17.6	4851.0
12/22/08	0812217-004A	25.3	<0.9792	23.7	62.0	546.7	4.8	39.2	<0.9792	49.8	2366.4
12/23/08	0812217-005A	<20.331	<20.331	45.2	143.1	753.0	10.5	143.1	<20.331	43.0	3087.3
12/23/08	0812217-006A	20.4	<0.9828	25.7	42.3	831.6	3.1	34.0	<0.9828		
12/24/08	0812217-007A	18.0	<0.9776	32.3	112.8	511.4	4.9	195.5	1.2	24.2	2268.0
12/29/08	0901008-001A	38.3	<0.975	66.8	43.5	2700.0	5.6	28.5	1	34.6	3008.0
12/30/08	0901008-002A	17.9	<0.9685	48.4	41.0	1192.0	5.6	24.6	1.3	18.0	4800.0
12/30/08	0901008-003A	14.4	<0.988	36.5	44.1	912.0	3.6		1.1	13.4	3650.8
					44.1	312.0	3.0	38.8	<0.988	22.8	2812.0
VERAGE		22.7	NA	43.7	63.8	1076	£0				
TANDARD DEV	IATION	6.5	NA	13.3	34.3		5.8	66.0	1.2	26.2	3486
DEFFICIENT O	F VARIATION	28.7%	NA	30.4%		608	2.0	53.9	0.2	11.5	886
				30.4%	53.8%	56.5%	34.7%	81.8%	12.3%	44.1%	25.4%

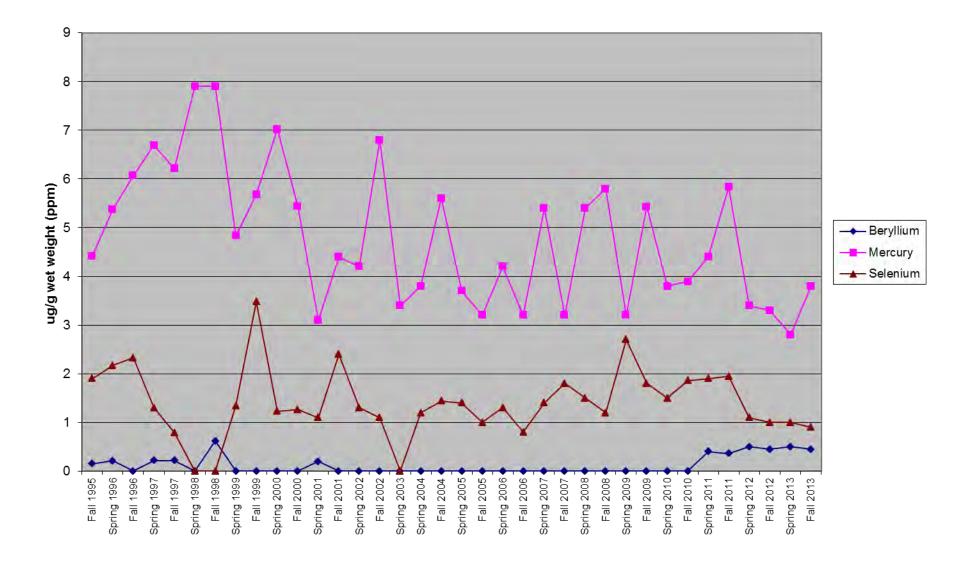
Sample	T	1									
Collection	Lab	As	Be	Cď	Cr	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
5/11/2009	0905077-001A	38.8	<1.0	32.9	69.2	1012.8	2.6	50.6	1.1	41.4	3798
5/11/2009	0905077-002A	48.4	<1.0	60.0	72,3	999.7	2.9	35.4	3.8	32.3	4537.1
5/12/2009	0905077-003A	64.2	<1.0	70.6	58.5	1203.0	3.4	27.3	5,1	36.1	5453.6
5/12/2009	0905077-004A	80.6	<1.0	80.6	61.3	3707.6	5.6	96.7	5.3	26.6	6931.6
5/13/2009	0905108-001A	51.2	<1.0	56.2	62.8	1156.4	3.7	65.3	2,5	38.0	4790.8
5/13/2009	0905108-002A	39.7	<1.0	33.2	137.7	972.0	1.9	170.1	1,1	55.1	4131
5/14/2009	0905106-003A	45.4	<1.0	57.0	50.8	1463.0	4.4	54.7	2.0	29.3	7700
5/14/2009	0905106-004A	39.4	<1.0	41.1	53,4	985.2	2.7	55.0	1.7	34.5	4269.2
5/15/2009	0905106-005A	37.3	<1.0	51.1	57.6	1703.1	3.2	51.9	1.2	31.6	4217.2
5/15/2009	905106-006A	35.6	<1.0	34.7	59.5	769,1	1,8	78.6	<1.0	39.7	4217.7
											
Average		48.1	NA	51.7	68.3	1397.2	3.2	68.6	2.7	36,4	5004.6
Standard Dev	riation	14.3	NA	16.3	25.2	855.2	1.1	40.8	1.7	8.0	1309.9
Coefficient of	variation	29.7%	NA	31.6%	36.9%	61.2%	34.8%	59.5%	63.1%	22.0%	26.2%
											20,270
Sample Collection	1 - 1										
Collection Date	Lab #	As	Be	Cd	. Cr	Pb	Hg	Ni	Se	V	Zn
10/16/2009	# 0910091-006A	Arsenic	Beryllium	Cadmlum	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/10/19/09	0910091-008A	29	<1.0	44	58	620	3.2	48	2	26	26000
10/20/2009	0910091-007A	50	<1.0	86	38	1500	5.7	23	1.1	27	6300
10/20/2009	0910091-009A	35	<1.0	51	37	710	4.1	29	<1.0	23	4200
10/21/2009	0910113-008A	50 46	<1.0	88	41	1300	7.4	45	1.2	21	6100
10/21/2009	0910113-009A	40	<1.0	74	48	1300	2.6	32	1.1	36	5600
10/22/2009	0910113-010A	45 29	<1.0	87	36	1100	2.8	23	1.2	25	6200
10/22/2009	0910113-011A	30	<1.0	43	37	660	7.9	24	<1.0	30	3900
10/23/2009	0910113-011A		<1.0	64	78	900	3.8	55	2.5	26	5100
10/24/2009	0910113-012A	<u>33</u> 40	<1.0		43	1000	8.9	40	2.6	18	6000
	010110-010A	40	<1.0	100	35	1400	7.9	32	2.7	15	7700
Average		38.7							······		·
Standard D	eviation	8.6	NA	71.4	45.1	1051	5.43	35.1	1.8	24.7	7710
Coefficient of		22.1%	NA NA	20.0	13.5	318.8	2.4	11.3	0.7	6.0	6516,4
·		FE. 170		28.1%	30.0%	30.3%	44.5%	32.3%	40.3%	24.1%	84.50%

Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
5/24/2010	1006054-013A	45.0	<1.0	63.0	55.0	1000.0	3.4	47.0	1.8	38.0	5200
5/25/2010	1006054-014A	34.0	<1.0	44.0	48.0	660.0	2.5	44.0	1.1	35.0	3800
5/25/2010	1006054-015A	43.0	<1.0	72.0	47.0	1000.0	4.1	31.0	1.6	21.0	6300
5/26/2010	1006054-016A	24.0	<1.0	36.0	35.0	820.0	2.4	26.0	<1.0	28.0	3400
5/26/2010	1006054-017A	30.0	<1.0	49.0	46.0	1500.0	3.3	43.0	<1.0	35.0	4300
5/27/2010	1006054-018A	27.0	<1.0	39.0	40.0	530.0	4.5	57.0	<1.0	27.0	3000
5/27/2010	1006054-019A	34.0	<1.0	54.7	53.0	1100.0	5.8	38.0	1.3	28.0	4200
5/28/2010	1006054-020A	32.0	<1.0	32.0	57.0	560.0	3.5	27.0	<1.0	20.0 54.0	3300
5/28/2010	1006054-021A	37.0	<1.0	45.0	56.0	720.0	3.3	46.0	<1.0		
5/29/2010	1006054-022A	54.0	<1.0	46.0	56.0	800.0	5.3	28.0	<1.0	33.0	4300
	· · · · · · · · · · · · · · · · · · ·				00.0	000.0	0.0	20.0	<1.0	34.0	4100
Average		36.0	NA	48.1	49.3	869.0	2.0	20.7	4.5		
Standard Dev	viation	9.1	NA				3.8	38.7	1.5	33.3	4190.0
Coefficient of		25.2%	NA	12.3 25.5%	7.5 15.2%	292.4 33.6%	1.1 29.3%	10.4 26.9%	0.3 21.4%	8.8	971.2
Sample Collection	lah	Δe	Ba	Cd	6.	Dh					
Collection	Lab #	As	Be	Cd	Cr	Pb	Hg	N	Se	V	Zn
Collection Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
Collection		Arsenic 64	Beryllium <1.0	Cadmium 66	Chromium 67	Lead 990	Mercury 4.6	Nickel 160	Selenium 3,9	Vanadium 26	Zinc 5200
Collection Date 9/27/2010	# 1010020-013A	Arsenic 64 30	Beryllium <1.0 <0.94	Cadmium 66 73	Chromium 67 82	Lead 990 660	Mercury 4.6 2.6	Nickel 160 36	Selenium 3,9 1.7	Vanadium 26 39	Zinc 5200 4100
Collection Date 9/27/2010 9/28/2010	# 1010020-013A 1010020-014A	Arsenic 64	Beryllium <1.0 <0.94 <0.94	Cadmium 66 73 70	Chromium 67 82 33	Lead 990 660 870	Mercury 4.6 2.6 6.6	Nickel 160 36 26	Selenium 3,9 1.7 1.1	Vanadium 26 39 21	Zinc 5200 4100 4400
Collection Date 9/27/2010 9/28/2010 9/28/2010	# 1010020-013A 1010020-014A 1010020-015A	Arsenic 64 30 26 30	Beryllium <1.0 <0.94 <0.94 <1.0	Cadmium 66 73 70 55	Chromium 67 82 33 52	Lead 990 660 870 840	Mercury 4.6 2.6 6.6 4.1	Nicke1 160 36 26 74	Selenium 3.9 1.7 1.1 1.3	Vanadium 26 39 21 31	Zinc 5200 4100 4400 4800
Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A	Arsenic 64 30 26	Beryllium <1.0 <0.94 <0.94	Cadmium 66 73 70 55 71	Chromium 67 82 33 52 48	Lead 990 660 870 840 990	Mercury 4.6 2.6 6.6 4.1 6.8	Nickel 160 36 26 74 32	Selenium 3.9 1.7 1.1 1.3 1.9	Vanadium 26 39 21 31 34	Zinc 5200 4100 4400 4800 5500
Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A	Arsenic 64 30 26 30 49	Beryllium <1.0 <0.94 <0.94 <1.0 <0.98	Cadmium 66 73 70 55	Chromium 67 82 33 52	Lead 990 660 870 840	Mercury 4.6 2.6 6.6 4.1 6.8 3.8	Nickel 160 36 26 74 32 49	Selenium 3.9 1.7 1.1 1.3 1.9 2.3	Vanadium 26 39 21 31 34 25	Zinc 5200 4100 4400 4800 5500 5100
Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-018A	Arsenic 64 30 26 30 49 38	Beryllium <1.0 <0.94 <0.94 <1.0 <0.98 <0.96	Cadmium 66 73 70 55 71 72	Chromium 67 82 33 52 48 55	Lead 990 660 870 840 990 1200	Mercury 4.6 2.6 6.6 4.1 6.8	Nickel 160 36 26 74 32 49 40	Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2	Vanadium 26 39 21 31 34 25 22	Zinc 5200 4100 4400 4800 5500 5100 6600
Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-018A 1010020-019A	Arsenic 64 30 26 30 49 38 45	Beryllium <1.0 <0.94 <1.0 <1.0 <0.98 <0.96 <1.0	Cadmium 66 73 70 55 71 72 110	Chromium 67 82 33 52 48 55 37	Lead 990 660 870 840 990 1200 1300	Mercury 4.6 2.6 6.6 4.1 6.8 3.8 2.5	Nickel 160 36 26 74 32 49 40 60	Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2 1.1	Vanadium 26 39 21 31 34 25 22 49	Zinc 5200 4100 4400 4800 5500 5100 6600 3100
Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-018A 1010020-019A 1010020-019A	Arsenic 64 30 26 30 49 38 45 21	Beryllium <1.0 <0.94 <1.0 <1.0 <0.98 <0.96 <1.0 <0.94	Cadmium 66 73 70 55 71 72 110 33	Chromium 67 82 33 52 48 55 37 69	Lead 990 660 870 840 990 1200 1300 1300	Mercury 4.6 2.6 6.6 4.1 6.8 3.8 2.5 2.4	Nickel 160 36 26 74 32 49 40	Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2	Vanadium 26 39 21 31 34 25 22 49 46	Zinc 5200 4100 4400 4800 5500 5100 6600 3100 3700
Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010 10/2/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-018A 1010020-019A 1010020-020A 1010020-021A	Arsenic 64 30 26 30 49 38 45 21 27 26	Beryllium <1.0 <0.94 <1.0 <0.98 <0.96 <1.0 <0.94 <1.0 <1.0 <1.0	Cadmium 66 73 70 55 71 72 110 33 38	Chromium 67 82 33 52 48 55 37 69 56	Lead 990 660 870 840 990 1200 1300 1300 820	Mercury 4.6 2.6 6.6 4.1 6.8 3.8 2.5 2.4 1.6	Nickel 160 36 26 74 32 49 40 60 56	Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2 1.1 1.4	Vanadium 26 39 21 31 34 25 22 49	Zinc 5200 4100 4400 4800 5500 5100 6600 3100
Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010 10/2/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-019A 1010020-019A 1010020-021A 1010020-022A	Arsenic 64 30 26 30 49 38 45 21 27 26 35.6	Beryllium <1.0 <0.94 <1.0 <0.98 <0.96 <1.0 <0.94 <1.0 <1.0 <1.0	Cadmium 66 73 70 55 71 72 110 33 38 54 64.2	Chromium 67 82 33 52 48 55 37 69 56	Lead 990 660 870 840 990 1200 1300 1300 820	Mercury 4.6 2.6 6.6 4.1 6.8 3.8 2.5 2.4 1.6	Nickel 160 36 26 74 32 49 40 60 56	Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2 1.1 1.4	Vanadium 26 39 21 31 34 25 22 49 46 32	Zinc 5200 4100 4400 5500 5100 6600 3100 3700 4100
Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 10/1/2010 10/1/2010 10/2/2010 Average	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-019A 1010020-019A 1010020-021A 1010020-022A	Arsenic 64 30 26 30 49 38 45 21 27 26	Beryllium <1.0 <0.94 <1.0 <0.98 <0.96 <1.0 <0.94 <1.0 <1.0 <1.0	Cadmium 66 73 70 55 71 72 110 33 38 54	Chromium 67 82 33 52 48 55 37 69 56 59	Lead 990 660 870 840 990 1200 1300 1300 820 1100	Mercury 4.6 2.6 6.6 4.1 6.8 3.8 2.5 2.4 1.6 3.9	Nickel 160 36 26 74 32 49 40 60 56 32	Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2 1.1 1.4 1.7	Vanadium 26 39 21 31 34 25 22 49 46	Zinc 5200 4100 4400 4800 5500 5100 6600 3100 3700

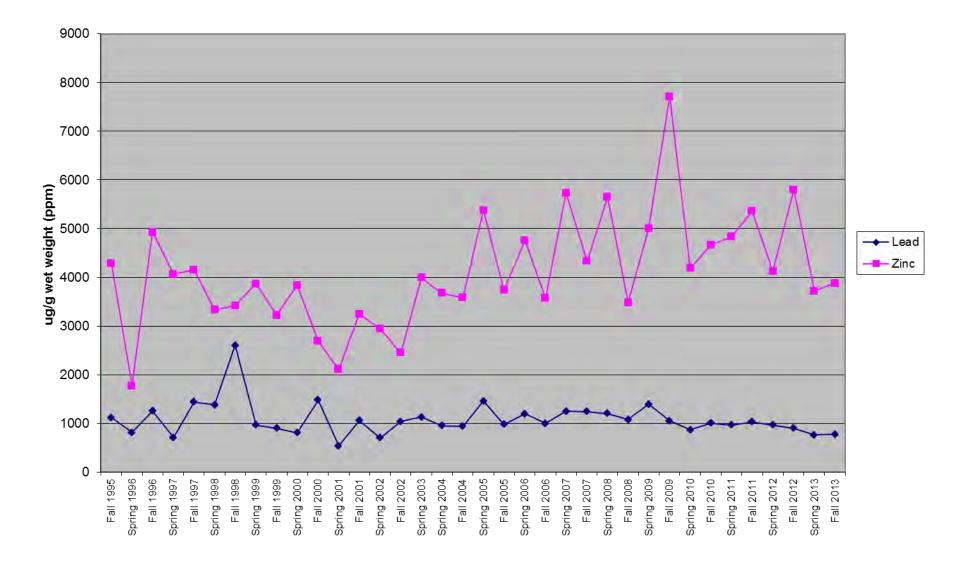
Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
6/7/2011	K1106170-013A	51.0	0.4	56.0	57.0	1400.0	3.1	29.0	1.8	35.0	4800
6/7/2011	K1106170-014A	46.0	0.3	76.0	49.0	1000.0	5.5	23.0	1.7	27.0	5200
6/8/2011	K1106170-015A	45.0	0.4	53.0	56.0	850.0	2.5	65.0	1.7	32.0	4900
6/8/2011	K1106170-016A	52.0	0.3	81.0	59.0	1700.0	7.0	34.0	1.5	29.0	5600
6/9/2011	K1106170-017A	39.0	0.3	61.0	50.0	1100.0	3.6	50.0	1.6	29.0	5200
6/9/2011	K1106170-018A	41.0	0.4	61.0	46.0	710.0	4.0	32.0	2.3	30.0	5100
6/10/2011	K1106170-019A	22.0	0.6	31.0	57.0	500.0	6.4	32.0	3.1	33.0	3300
6/10/2011	K1106170-020A	34.0	0.4	52.0	52.0	980.0	3.3	40.0	1.9	34.0	4300
6/11/2011	K1106170-021A	29.0	0.5	37.0	53.0	800.0	4.8	36.0	1.4	44.0	5000
6/11/2011	K1106170-022A	35.0	0.4	54.0	51.0	920.0	4.2	32.0	1.2	30.0	5000
									,		
Average		39.4	0.4	56.2	53.0	996.0	4,4	37.3	1.9	32.3	4840.0
Standard De	viation	9.6	0.1	15.2	4.2	343.7	1.5	12.0	0.5	4.8	634.6
Coefficient of	fvariation	24.4%	40.404	AT 141							
		24.4%	19.4%	27.1%	7.9%	34.5%	33.1%	32.3%	27.7%	14.9%	13.1%
Sample Collection	Lab										
Sample	1	As Arsenic	Be Beryllium	27.1% Cd Cadmium	Cr	34.5% Pb Lead	Hg	Ni	Se	v	Zn
Sample Collection	Lab	As	Be	Cd		Pb				V Vanadium	Zn Zinc
Sample Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Нg Мегсигу	Ni Nickel	Se Selenium	v	Zn
Sample Collection Date 10/18/2011	Lab # K1110337-013A	As Arsenic 34	Be Beryllium 0.28	Cd Cadmium 64	Cr Chromium 44	Pb Lead 870	Hg Mercury 3.9	Ni Nickel 33	Se Selenium 1.4	V Vanadium 32	Zn Zinc 6600
Sample Collection Date 10/18/2011 10/18/2011	Lab # K1110337-013A K1110337-014A	As Arsenic 34 33	Be Beryllium 0.28 0.33	Cd Cadmium 64 240	Cr Chromium 44 95	Pb Lead 870 1600	Hg Mercury 3.9 4.5	Ni Nickel 33 28	Se Selenium 1.4 1.3	V Vanadium 32 35	Zn Zinc 6600 4400
Sample Collection Date 10/18/2011 10/18/2011 10/19/2011	Lab # K1110337-013A K1110337-014A K1110337-015A	As Arsenic 34 33 32	Be Beryllium 0.28 0.33 0.39	Cd Cadmium 64 240 46	Cr Chromium 44 95 58	Pb Lead 870 1600 830	Hg Mercury 3.9 4.5 2.3	Ni Nickel 33 28 50	Se Selenium 1.4 1.3 1.4	V Vanadium 32 35 33	Zn Zinc 6600 4400 3900
Sample Collection Date 10/18/2011 10/18/2011 10/19/2011 10/20/2011 10/20/2011	Lab # K1110337-013A K1110337-014A K1110337-015A K1110337-016A	As Arsenic 34 33 32 36	Be Beryllium 0.28 0.33 0.39 0.41	Cd Cadmium 64 240 46 58	Cr Chromium 44 95 58 61	Pb Lead 870 1600 830 880	Hg Mercury 3.9 4.5 2.3 4.3	Ni Nickel 33 28 50 38	Se Selenium 1.4 1.3 1.4 2	V Vanadium 32 35 33 36	Zn Zinc 6600 4400 3900 5000
Sample Collection Date 10/18/2011 10/19/2011 10/19/2011 10/20/2011 10/20/2011 10/21/2011	Lab # K1110337-013A K1110337-015A K1110337-015A K1110337-016A K1110337-018A K1110337-018A K1110337-019A	As Arsenic 34 33 32 36 39	Be Beryllium 0.28 0.33 0.39 0.41 0.34	Cd Cadmium 64 240 46 58 92	Cr Chromium 44 95 58 61 59	Pb Lead 870 1600 830 880 1100	Hg Mercury 3.9 4.5 2.3 4.3 13	Ni Nickel 33 28 50 38 42	Se Selenium 1.4 1.3 1.4 2 1.9	V Vanadium 32 35 33 36 28	Zn Zinc 6600 4400 3900 5000 6900
Sample Collection Date 10/18/2011 10/19/2011 10/19/2011 10/20/2011 10/21/2011 10/21/2011	Lab # K1110337-013A K1110337-014A K1110337-015A K1110337-016A K1110337-017A K1110337-019A K1110337-019A	As Arsenic 34 33 32 36 39 29	Be Beryllium 0.28 0.33 0.39 0.41 0.34 0.32	Cd Cadmium 64 240 46 58 92 72	Cr Chromium 44 95 58 61 59 54	Pb Lead 870 1600 830 880 1100 1000	Hg Mercury 3.9 4.5 2.3 4.3 13 11	Ni Nickel 33 28 50 38 42 34	Se Selenium 1.4 1.3 1.4 2 1.9 1.6	V Vanadium 32 35 33 36 28 32	Zn Zinc 6600 4400 3900 5000 6900 5300
Sample Collection Date 10/18/2011 10/19/2011 10/19/2011 10/20/2011 10/20/2011 10/21/2011 10/21/2011	Lab # K1110337-013A K1110337-013A K1110337-014A K1110337-015A K1110337-016A K1110337-019A K1110337-019A K1110337-020A K1110337-021A	As Arsenic 34 33 32 36 39 29 29 28 35 26	Be Beryllium 0.28 0.33 0.39 0.41 0.34 0.32 0.33 0.41 0.52	Cd Cadmium 64 240 46 58 92 72 62	Cr Chromium 44 95 58 61 59 54 54 52	Pb Lead 870 1600 830 880 1100 1000 890	Hg Mercury 3.9 4.5 2.3 4.3 13 11 5.4	Ni Nickel 33 28 50 38 42 34 29	Se Selenium 1.4 1.3 1.4 2 1.9 1.6 4.1	V Vanadium 32 35 33 36 28 32 28	Zn Zinc 6600 4400 3900 5000 6900 5300 6300
Sample Collection Date 10/18/2011 10/19/2011 10/19/2011 10/20/2011 10/20/2011 10/21/2011 10/21/2011	Lab # K1110337-013A K1110337-014A K1110337-015A K1110337-016A K1110337-017A K1110337-019A K1110337-019A	As Arsenic 34 33 32 36 39 29 28 35	Be Beryllium 0.28 0.33 0.39 0.41 0.34 0.32 0.33 0.41	Cd Cadmium 64 240 46 58 92 72 62 88	Cr Chromium 44 95 58 61 59 54 52 48	Pb Lead 870 1600 830 880 1100 1000 890 1500	Hg Mercury 3.9 4.5 2.3 4.3 13 11 5.4 7	Ni Nickel 33 28 50 38 42 34 29 26	Se Selenium 1.4 1.3 1.4 2 1.9 1.6 4.1 2.7	V Vanadium 32 35 33 36 28 32 28 32 28 30	Zn Zinc 6600 4400 3900 5000 6900 5300 6300 5300
Sample Collection Date 10/18/2011 10/18/2011 10/19/2011 10/20/2011 10/20/2011 10/21/2011 10/21/2011 10/26/2011	Lab # K1110337-013A K1110337-013A K1110337-014A K1110337-015A K1110337-016A K1110337-019A K1110337-019A K1110337-020A K1110337-021A	As Arsenic 34 33 32 36 39 29 28 35 26 43	Be Beryllium 0.28 0.33 0.39 0.41 0.32 0.33 0.33 0.41 0.52 0.27	Cd Cadmium 64 240 46 58 92 72 62 88 35 75	Cr Chromium 44 95 58 61 59 54 52 48 59 41	Pb Lead 870 1600 830 880 1100 1000 890 1500 690 960	Hg Mercury 3.9 4.5 2.3 4.3 13 11 5.4 7 3.2 3.7	Ni Nickel 33 28 50 38 42 34 29 26 45 28	Se Selenium 1.4 1.3 1.4 2 1.9 1.6 4.1 2.7 1.3 1.8	V Vanadium 32 35 33 36 28 32 28 30 33 32 32	Zn Zinc 6600 4400 3900 5000 6900 5300 6300 5800 4000
Sample Collection Date 10/18/2011 10/19/2011 10/19/2011 10/20/2011 10/21/2011 10/21/2011 10/26/2011 10/26/2011	Lab # K1110337-013A K1110337-014A K1110337-015A K1110337-016A K1110337-017A K1110337-019A K1110337-019A K1110337-020A K1110337-021A K1110337-022A	As Arsenic 34 33 32 36 39 29 28 35 26 43 33.5	Be Beryllium 0.28 0.33 0.39 0.41 0.34 0.32 0.33 0.41 0.52 0.27	Cd Cadmium 64 240 46 58 92 72 62 88 35 75 83.2	Cr Chromium 44 95 58 61 59 54 52 48 59 41 57.1	Pb Lead 870 1600 830 880 1100 1000 890 1500 690 960	Hg Mercury 3.9 4.5 2.3 4.3 13 11 5.4 7 3.2 3.7 5.83	Ni Nickel 33 28 50 38 42 34 29 26 45 28 35.3	Se Selenium 1.4 1.3 1.4 2 1.9 1.6 4.1 2.7 1.3 1.8 1.95	V Vanadium 32 35 33 36 28 32 28 30 33 32 31.9	Zn Zinc 6600 4400 3900 5000 6900 5300 6300 5800 4000
Sample Collection Date 10/18/2011 10/19/2011 10/19/2011 10/20/2011 10/21/2011 10/21/2011 10/26/2011 10/26/2011 10/26/2011	Lab # K1110337-013A K1110337-014A K1110337-015A K1110337-016A K1110337-017A K1110337-019A K1110337-019A K1110337-020A K1110337-021A K1110337-022A	As Arsenic 34 33 32 36 39 29 28 35 26 43	Be Beryllium 0.28 0.33 0.39 0.41 0.34 0.32 0.33 0.41 0.52 0.27	Cd Cadmium 64 240 46 58 92 72 62 88 35 75	Cr Chromium 44 95 58 61 59 54 52 48 59 41	Pb Lead 870 1600 830 880 1100 1000 890 1500 690 960	Hg Mercury 3.9 4.5 2.3 4.3 13 11 5.4 7 3.2 3.7	Ni Nickel 33 28 50 38 42 34 29 26 45 28	Se Selenium 1.4 1.3 1.4 2 1.9 1.6 4.1 2.7 1.3 1.8	V Vanadium 32 35 33 36 28 32 28 30 33 32 32	Zn Zinc 6600 4400 3900 5000 6900 5300 6300 5300 6300 5800 4000 5400


Sample											
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
6/12/2012	K1206354-001A	93	0.43	53	83	600	3	73	1.2	29	3800
6/12/2012	K1206354-002A	70	0.42	50	61	620	5	27	0.58	31	3400
6/13/2012	K1206354-003A	82	0.45	60	76	1100	3.5	35	0.92	26	4000
6/13/2012	K1206354-004A	60	0.44	45	66	420	2.5	42	0.84	29	3400
6/20/2012	K1206354-005A	42	1	29	43	830	1.8	37	0.71	26	2800
6/14/2012	K1206354-006A	53	0.38	59	53	1200	4.7	23	1.6	25	3600
6/15/2012	K1206354-007A	46	0.59	27	77	2000	2.5	53	0.87	45	3400
6/12/2012	K1206354-008A	66	0.37	55	57	400	4.8	27	1.6	32	4700
6/19/2012	K1206354	75	0.39	56	56	1300	3.2	25	1,4	28	4800
6/19/2012	K1206354-010A	68	0.42	45	180	1200	2.6	76	1	26	7400
										- · · · · · · · · · · ·	
Average		65.5	0.5	47.9	75.2	967.0 [°]	3.4	41.8	1.1	29.7	4130.0
							4.4	19.5	0.4	5.9	1301.3
Standard Devia	ation	15.9	0.2	11.7	38.8	494.3	1.1	19.5	0.4	0.9	
		15.9 24.2%	0.2 38.8%	11.7 24.4%	38.8 51.6%	494.3 51.1%	33.2%	46.6%	33.7%	19.7%	31.5%
Standard Devia											
Standard Devia			38.8%	24.4%	51.6%	51.1%		46.6%	33.7%	19.7%	31.5%
Standard Devia Coefficient of v Sample Collection	rariation Lab		38.8% Be	24.4% Cd	51.6% Cr	51.1% Pb	33.2% Hg	46.6% Ni	33.7%	19.7% V	31.5% Zn
Standard Devia Coefficient of v Sample Collection Date	Lab #	24.2% As Arsenic	38.8% Be Beryllium	24.4% Cd Cadmium	51.6% Cr Chromium	51.1% Pb Lead	33.2% Hg Mercury	46.6% Ni Nickel	33.7% Se Selenium	19.7% V Vanadium	31.5% Zn Zinc
Standard Devia Coefficient of v Sample Collection Date 9/25/2012	Lab # K1210235-001A	24.2% As Arsenic 65	38.8% Be Beryllium 0.38	24.4% Cd Cadmium 48	51.6% Cr Chromium 50	51.1% Pb Lead 1000	33.2% Hg Mercury 2.4	46.6% Ni Nickel 45	33.7% Se Selenium 0.64	V V Vanadium 28	31.5% Zn Zinc 5,000
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012	Lab # K1210235-001A K1210235-002A	24.2% As Arsenic 65 30	38.8% Be Beryllium 0.38 0.36	24.4% Cd Cadmium 48 28	51.6% Cr Chromium 50 47	51.1% Pb Lead 1000 490	33.2% Hg Mercury 2.4 1.9	46.6% Ni Nickel 45 37	33.7% Se Selenium 0.64 2.7	19.7% V Vanadium 28 25	31.5% Zn Zinc 5,000 2900
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012	Lab # K1210235-001A K1210235-002A K1210235-003A	24.2% As Arsenic 65 30 39	38.8% Be Beryllium 0.38 0.36 0.4	24.4% Cd Cadmium 48 28 34	51.6% Cr Chromium 50 47 46	51.1% Pb Lead 1000 490 480	33.2% Hg Mercury 2.4 1.9 1.6	46.6% Ni Nickel 45 37 68	33.7% Se Selenium 0.64 2.7 0.5	19.7% V Vanadium 28 25 38	31.5% Zn Zinc 5,000 2900 3400
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-004A	24.2% As Arsenic 65 30 39 41	38.8% Be Beryllium 0.38 0.36 0.4 0.39	24.4% Cd Cadmium 48 28 34 58	51.6% Cr Chromium 50 47 46 52	51.1% Pb Lead 1000 490 480 1500	Hg Mercury 2.4 1.9 1.6 4.2	46.6% Ni Nickel 45 37 68 29	33.7% Se Selenium 0.64 2.7 0.5 0.5	V Vanadium 28 25 38 30	31.5% Zn Zinc 5,000 2900 3400 5000
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-004A K1210235-005A	24.2% As Arsenic 65 30 39 41 41	38.8% Be Beryllium 0.38 0.36 0.4 0.39 0.34	24.4% Cd Cadmium 48 28 34 58 54	51.6% Cr Chromium 50 47 46 52 49	51.1% Pb Lead 1000 490 480 1500 660	Hg Mercury 2.4 1.9 1.6 4.2 2.7	46.6% Ni Nickel 45 37 68 29 29	33.7% Se Selenium 0.64 2.7 0.5 0.5 1.4	19.7% V Vanadium 28 25 38 30 23	31.5% Zn Zinc 5,000 2900 3400 5000 6400
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-004A	24.2% As Arsenic 65 30 39 41	38.8% Be Beryllium 0.38 0.36 0.4 0.39	24.4% Cd Cadmium 48 28 34 58	51.6% Cr Chromium 50 47 46 52	51.1% Pb Lead 1000 490 480 1500	Hg Mercury 2.4 1.9 1.6 4.2	46.6% Ni Nickel 45 37 68 29	33.7% Se Selenium 0.64 2.7 0.5 0.5	V Vanadium 28 25 38 30	31.5% Zn Zinc 5,000 2900 3400 5000
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012 10/3/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-005A K1210235-005A K1210235-006A	24.2% As Arsenic 65 30 39 41 41 41 44	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.34 0.4	24.4% Cd Cadmium 48 28 34 58 54 61	51.6% Cr Chromium 50 47 46 52 49 48	51.1% Pb Lead 1000 490 480 1500 660 1200	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4	46.6% Ni Nickel 45 37 68 29 29 29 28	33.7% Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1	19.7% V Vanadium 28 25 38 30 23 23 26	31.5% Zn Zinc 5,000 2900 3400 5000 6400 4800
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012 10/3/2012 10/3/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-004A K1210235-006A K1210235-006A K1210235-007A	24.2% As Arsenic 65 30 39 41 41 41 44 48	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.4 0.51	24.4% Cd Cadmium 48 28 34 58 54 61 64	51.6% Cr Chromium 50 47 46 52 49 48 74	Pb Lead 1000 490 480 1500 660 1200 1100	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7	46.6% Ni Nickel 45 37 68 29 29 29 28 82	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1 0.65	V Vanadium 28 25 38 30 23 26 34	31.5% Zn Zinc 5,000 2900 3400 5000 6400 4800 5100
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012 10/3/2012 10/4/2012 10/5/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-004A K1210235-005A K1210235-006A K1210235-007A K1210235-007A	24.2% As Arsenic 65 30 39 41 41 41 44 48 43	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.51 0.4	24.4% Cd Cadmium 48 28 34 58 54 61 64 48	51.6% Cr Chromium 50 47 46 52 49 48 74 52	51.1% Pb Lead 1000 490 480 1500 660 1200 1100 1000	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7 1.4	46.6% Ni Nickel 45 37 68 29 29 29 29 28 82 95	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1 0.65 0.59	V Vanadium 28 25 38 30 23 23 26 34 30	31.5% Zn Zinc 5,000 2900 3400 5000 6400 4800 5100 17000
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012 10/3/2012 10/4/2012 10/5/2012 10/5/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-005A K1210235-005A K1210235-006A K1210235-008A K1210235-008A K1210235-008A	24.2% As Arsenic 65 30 39 41 41 44 48 43 65 33	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.51 0.4 0.39 0.35	24.4% Cd Cadmium 48 28 34 58 54 61 64 48 62 34	51.6% Cr Chromium 50 47 46 52 49 48 74 52 53 53 53	51.1% Pb Lead 1000 490 480 1500 660 1200 1100 1000 470	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7 1.4 6.4 4	46.6% Ni Nickel 45 37 68 29 29 29 28 82 95 52 33	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1 0.65 0.59 1.2 0.5	V Vanadium 28 25 38 30 23 26 34 30 34 30 34 30	31.5% Zn Zinc 5,000 2900 3400 5000 6400 4800 5100 17000 5200 3200
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012 10/3/2012 10/4/2012 10/5/2012 10/5/2012 10/6/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-003A K1210235-005A K1210235-006A K1210235-007A K1210235-009A K1210235-009A K1210235-010A	24.2% As Arsenic 65 30 39 41 41 41 44 48 43 65 33 44.9	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.51 0.4 0.39 0.35	24.4% Cd Cadmium 48 28 34 58 54 61 64 61 64 48 62 34 34 49.1	51.6% Cr Chromium 50 47 46 52 49 48 74 52 53 53 53 53	51.1% Pb Lead 1000 490 480 1500 660 1200 1100 1000 1100 470 900	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7 1.4 6.4 4 3.27	46.6% Ni Nickel 45 37 68 29 29 29 29 28 82 95 52 33 33	Se Selenium 0.64 2.7 0.5 1.4 1.1 0.65 0.59 1.2 0.5 1.0	V Vanadium 28 25 38 30 23 26 34 30 34 30 34 30 34 30	31.5% Zn Zinc 5,000 2900 3400 5000 6400 4800 5100 17000 5200 3200
Standard Devia Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/26/2012 10/2/2012 10/2/2012 10/3/2012 10/4/2012 10/5/2012 10/5/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-003A K1210235-005A K1210235-006A K1210235-007A K1210235-009A K1210235-009A K1210235-010A	24.2% As Arsenic 65 30 39 41 41 44 48 43 65 33	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.51 0.4 0.39 0.35	24.4% Cd Cadmium 48 28 34 58 54 61 64 48 62 34	51.6% Cr Chromium 50 47 46 52 49 48 74 52 53 53 53	51.1% Pb Lead 1000 490 480 1500 660 1200 1100 1000 470	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7 1.4 6.4 4	46.6% Ni Nickel 45 37 68 29 29 29 28 82 95 52 33	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1 0.65 0.59 1.2 0.5	V Vanadium 28 25 38 30 23 26 34 30 34 30 34 30	31.5% Zn Zinc 5,000 2900 3400 5000 6400 4800 5100 17000 5200 3200

Analysis performed by Life Science Laboratories, Inc.


Ì

					2013 ASH I	METAL ANA	ALYSES					
				ALL R	ESULTS IN	UG/G (ppm) - Wet Weig	ght				
O a marcha												
Sample	l -h	A -	D -	01	0.	п.		N. II.	0-		7	
Collection Date	Lab #	As Arsenic	Be	Cd Cadmium	Cr Chromium	Pb Lead	Hg	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc	
Dale	#	Arsenic	Beryllium	Caumum	Chromium	Leau	Mercury	INICKEI	Selenium	Vanaulum	ZINC	
6/11/2013	K1306243-001A	47	0.54	36	61	950	2.3	37	1.1	27	3500	
6/12/2013	K1306243-002A	53	0.55	44	59	1300	3.7	27	1.4	26	4100	
6/12/2013	K1306243-003A	44	0.48	33	59	610	2.5	25	0.68	24	3900	
6/13/2013	K1306243-004A	42	0.55	30	74	430	1.8	37	0.5	39	3200	l
6/13/2013	K1306243-005A	51	0.45	40	59	610	2.2	31	1.1	24	4600	
6/14/2013	K1306243-006A	54	0.43	37	52	610	3.3	24	1	25	3200	ĺ
6/18/2013	K1306243-007A	59	0.36	49	52	600	2.5	24	1.4	25	3900	
6/18/2013	K1306243-008A	48	0.48	38	67	630	2.5	58	1	32	3100	
6/19/2013	K1306243-009A	77	0.36	42	82	820	3.4	51	0.65	29	3500	
6/19/2013	K1306243-010A	69	0.46	54	130	1100	4.1	98	1.5	33	4200	
			<u> </u>							· · · · · · · · · · · · · · · · · · ·		
Verage		54.4	0.5	40.3	69.5	766.0	2.8	41.2	1.0	28.4	3720.0	
Standard Devi	ation	11.1	0.1	7.3	23.2	271.9	0.7	23.1	0.3	4.9	498.4	
Coefficient of	variation	20.5%	15.0%	18.0%	33.4%	35.5%	26.3%	56.1%	33.1%	17.3%	13.4%	
												,
Sample												
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	V	Zn	
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc	
11/4/2013	K1311221-001A	42	0.36	42	51	1400	3.1	33	0.82	36	4200	
11/4/2013	K1311221-002A	41	0.41	46	50	560	3.3	28	0.9	35	4600	ļ
11/5/2013 11/5/2013	K1311221-003A K1311221-004A	37	0.33 0.34	49 45	48 91	830 1200	3.7 2.7	30 301	1.2 1.1	23 26	4200	
11/5/2013	K1311221-004A K1311221-005A	24	0.34	45 31	91 60	1200 550	3.3	301 120	1.1 0.5	26 28	4000 2900	}
11/6/2013	K1311221-005A K1311221-006A	41	0.37	50	72	560	3.3	79	1.1	28	4700	
	K1311221-000A	25	0.36	32	48	860	3.3	260	0.73	23	3200	
11/13/2013	K1311221-007A	36	0.30	44	40 50	910	5.8	40	1.3	20	4200	
11/14/2013	K1311221-009A	28	0.45	28	53	450	3.2	50	0.59	30	3300	
11/14/2013	K1311221-010A	26	0.42	29	66	420	6.5	50	0.63	35	3500	
			<u>.</u>							<u> </u>		,
Average		33.7	0.45	39.6	58.9	774	3.8	99.1	0.9	29.7	3880	ĺ
Standard De	eviation	7.2	0.0	8.6	13.9	329.0	1.3	100.0	0.3	4.3	616.1	
Coefficient c	f variation	21.3%	9.7%	21.8%	23.7%	42.5%	33.5%	100.9%	31.3%	14.6%	15.9%	
Analysis pe	formed by Life	Science La	aboratories, I	nc.								


VI.A. Mean Values Ash Data Wet Weight

VI.B. Mean Values Ash Data Wet Weight

VI.C. Mean Values Ash Data Wet Weight

SAMPLE											
COLLECTION	LAB	As	Be	Cd	Cr	Рb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/26/98	980808	34.2	0.92	30.6	54.8	979	7.99	57.3	<1.14	37.9	4090
10/26/98	980809	29.9	0.66	33.4	59.6	982	8.10	52.7	<1.27	40.0	4970
10/27/98	980810	46.8	0.96	36.4	180	1840	8.96	259	<3.21	47.0	4630
10/27/98	980811	31.6	0.83	39.9	61.6	18500	8.60	50.2	<1.23	32.9	5030
10/28/98	980812	42.7	0.84	39.7	55.4	1980	10.4	42.5	<1.27	39.9	4300
10/28/98	980813	36.2	0.70	46.2	83.1	1880	11.4	97.3	<1.53	47.8	5720
10/29/98	980814	49.8	0.85	43.7	82.2	1310	12.1	71.1	<1.31	42.1	1880
10/29/98	980815	41.4	0.92	40.5	59.8	3510	18.7	22.6	<1.31	35.1	5050
10/30/98	980816	36.8	0.65	28.2	45.8	914	9.04	50.7	<3.10	51.4	3840
10/30/98	980817	39.2	0.65	28.3	44.3	1410	7.87	74.4	<1.28	35.1	4990
		38.9	0.80	36.7	72.7	3331	10.3	77.8	N/A	40.9	4450
TANDARD DEVI		6.1	0.12	6.0	37.8	5108	3.1	63.3	N/A	5.8	1002
OEFFICIENT OF	- VARIATION	<u>15.7%</u>	14.7%	16.4%	52%	153.4%	30.2%	81%	N/A	14.2%	22.5%

.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
04-19-99	990215	38.0	<0.62	36.8	62.6	950	5.70	91.2	1.60	38.6	3580
04-19-99	990216	25.5	<0.56	36.8	128.0	2090	4.30	38.1	1.30	41.0	10700
04-20-99	990217	34.6	<0.66	39.1	62.6	970	5.10	82.8	1.70	43.0	3640
04-20-99	990218	26.0	<0.61	42.7	61.3	815	7.00	<u>39.8</u>	1.70	25.0	3650
04-21-99	990219	36.2	<0.63	45.8	65.0	1120	7.30	1910.0	1.90	35.0	4890
04-21-99	990220	39.0	<0.65	58.2	299.0	1090	6.90	57.9	2.30	42.5	5010
04-22-99	990221	29.7	<0.61	43.6	54.9	1270	5.10	48.2	1.10	38.9	3600
04-22-99	990222	37.2	<0.68	54.0	80.5	1560	7.00	42.7	1.60	32.8	4670
04-23-99	990223	37.7	<0.62	50.2	64.5	1060	6.00	36.6	2.10	37.5	4200
04-23-99	990224	31.1	<0.64	43.6	68.9	1220	7.20	55.9	1.70	30.4	4290
		33.5	N/A	45.1	94.7	1215	6.16	240	1.70	36.5	4823
STANDARD DEVI		4.8	N/A	6.8	70.9	350	1.01	557	0.33	5.4	2027
COEFFICIENT OF	VARIATION	14.3%	N/A	15.1%	74.8%	28.8%	16.5%	231.7%	19.5%	14.9%	42.0%

Analyses performed by ELS.

11-08-99	990747	37.5	<3.2	37.9	76.1	999	7.25	305.0	<3.2	46.8	4020
11-08-99	990748	43.5	<3.6	42.6	68.5	1130	7.71	378.0	4.90	43.1	4650
11-09-99	990749	43.5	<3.2	41.4	70.2	1350	6.18	85.1	<3.2	63.9	4130
11-09-99	990750	30.4	<3.1	40.6	76.1	883	6.88	61.9	<3.1	43.8	3700
11-10-99	990751	33.6	<3.3	40,7	85.6	1130	6.01	80.0	<3.3	53.8	4410
11-10-99	990752	34.4	<3.3	48.3	69.0	1900	7.06	58.2	<3.3	36.0	4510
11-11-99	990753	36,2	<3.1	40.0	58.6	1190	6.57	48.9	<3.1	61.6	3900
11-11-99	990754	33.4	<3.3	45.6	67.6	1200	10.20	59.0	<3.3	41.2	
11-12-99	990755	32.6	<3.4	38.2	69.4	972	8.64	54.8	<3.4		4680
11-12-99	990756	33.4	<3.2	51.1	55.8	1210	9.01	225.0	< <u>3.</u> 4 < <u>3.</u> 2	40.1	<u>3810</u>
							1 0.01	220.0		32.6	5020
VERAGE		35.9	N/A	42.6	69.7	1196	7.55	100	1.00		·
TANDARD DEV	ATION	4.2	N/A	4.1				136	4.90	46.3	4283
OEFFICIENT OF	VARIATION	11.8%	N/A		8.1	267	1.28	115	0.00	9.9	413
		1.070		9.7%	11.6%	22.4%	16.9%	<u>84.9%</u>	0.0%	21.3%	9.6%

COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium		Chromium		Mercury	Nickel		v Vanadium	Zinc
05/08/00	2000-0243	49.7	<0.63	45.5	75.4	1350	9.00	130.0	1.50	42.2	4000
05/08/00	2000-0244	34.1	<0.60	41.5	75.9	843	6.40	69.3	1.40	29.9	4030
05/09/00	2000-0245	91.8	<0.63	48.3	82.4	1390	10.70	309.0	3.30	<u> </u>	6970
05/09/00	2000-0246	32.3	<0.65	40.3	119.0	976	8.00	151.0	1.20	29.6	4720
05/10/00	2000-0247	39.9	<0.33	43.5	72.6	901	7.90	51.7	1.20	30.4	7590
05/10/00	2000-0248	32.9	<0.62	43.1	76.8	990	8.20	59.0	1.40	28.5	3680
05/11/00	2000-0249	66.4	<0.62	48.8	131.0	891	12.80	358.0	1.90	39.4	3800
05/11/00	2000-0250	43.4	<0.64	41.6	66.2	1090	7.30	38.0	<0.64	<u> </u>	<u>3800</u> 5070
05/12/00	2000-0251	32.3	<0.62	36.3	70.3	853	9.60	357.0	1.70	33.4	4620
05/12/00	2000-0252	46.8	<0.67	51.6	89.8	1010	9.00	56.4	1.90	34.7	4210
							0.00 1	00.4	1.00	34.7	4210
AVERAGE STANDARD DEV	(A.T.O.)	47.0	NA	44.1	85.9	1029	8.89	158	1.55	33.9	4869
		100 I	1 KFA F								
	EVADIATION	18.0	NA	4.3	20.6	185	1.73	125	0.78	4.7	1280
COEFFICIENT O	F VARIATION	38.4%	NA NA	4.3 9.8%	20.6	185 18.0%	<u> </u>	125 79.3%	0.78 50.1%	<u>4.7</u> 13.7%	1280 26.3%
COEFFICIENT O	F VARIATION	38.4%	NA	9.8%	24.0%	18.0%	the second s	the second s			
COEFFICIENT O Analyses performed b 12/10/00	F VARIATION by ELS. 2000-0785	38.4% 35.6	NA <0.65	9.8% 36.0	24.0% 54.1		the second s	the second s			
COEFFICIENT O Analyses performed b 12/10/00 12/11/00	F VARIATION by ELS. 2000-0785 2000-0786	38.4% 35.6 19.5	NA <0.65 <0.61	9.8% 36.0 23.1	24.0%	18.0%	19.5%	79.3%	50.1%	13.7%	26.3%
COEFFICIENT O Analyses performed b 12/10/00 12/11/00 12/11/00	F VARIATION by ELS. 2000-0785 2000-0786 2000-0787	38.4% 35.6 19.5 31.2	NA <0.65 <0.61 <0.66	9.8% 36.0	24.0% 54.1	18.0% 1300	19.5%	79.3% 42.0	50.1%	13.7% 57.0	26.3% 4010 2350
COEFFICIENT O Analyses performed b 12/10/00 12/11/00 12/11/00 12/12/00	F VARIATION by ELS. 2000-0785 2000-0786 2000-0787 2000-0788	38.4% 35.6 19.5 31.2 28.9	NA <0.65 <0.61	9.8% 36.0 23.1	24.0% 54.1 48.3	18.0% 1300 826	19.5% 12.00 6.71	79.3% 42.0 36.2	50.1% 1.40 1.20	13.7% 57.0 27.8 49.5	26.3% 4010 2350 3590
COEFFICIENT O Analyses performed b 12/10/00 12/11/00 12/11/00 12/12/00 12/12/00	F VARIATION by ELS. 2000-0785 2000-0786 2000-0787 2000-0788 2000-0789	38.4% 35.6 19.5 31.2	NA <0.65 <0.61 <0.66	9.8% 36.0 23.1 35.5	24.0% 54.1 48.3 66.2	18.0% 1300 826 990	19.5% 12.00 6.71 5.09	79.3% 42.0 36.2 60.0 52.1	50.1% 1.40 1.20 1.80 1.60	13.7% 57.0 27.8 49.5 36.1	26.3% 4010 2350 3590 4050
COEFFICIENT O Analyses performed b 12/10/00 12/11/00 12/11/00 12/12/00 12/12/00 12/13/00	F VARIATION by ELS. 2000-0785 2000-0786 2000-0787 2000-0788 2000-0789 2000-0790	38.4% 35.6 19.5 31.2 28.9	NA <0.65 <0.61 <0.66 <0.68	9.8% 36.0 23.1 35.5 42.7	24.0% 54.1 48.3 66.2 63.1	18.0% 1300 826 990 861	19.5% 12.00 6.71 5.09 6.72 5.84	79.3% 42.0 36.2 60.0 52.1 419.0	50.1% 1.40 1.20 1.80 1.60 1.80	13.7% 57.0 27.8 49.5 36.1 26.9	26.3% 4010 2350 3590 4050 4840
COEFFICIENT O Analyses performed b 12/10/00 12/11/00 12/12/00 12/12/00 12/12/00 12/13/00 12/13/00	F VARIATION by ELS. 2000-0785 2000-0786 2000-0787 2000-0788 2000-0789	38.4% 35.6 19.5 31.2 28.9 19.1	NA <0.65 <0.61 <0.66 <0.68 <0.67	9.8% 36.0 23.1 35.5 42.7 36.2	24.0% 54.1 48.3 66.2 63.1 92.6	18.0% 1300 826 990 861 1080 1160	19.5% 12.00 6.71 5.09 6.72 5.84 7.50	79.3% 42.0 36.2 60.0 52.1 419.0 64.6	50.1% 1.40 1.20 1.80 1.60 1.80 1.80	13.7% 57.0 27.8 49.5 36.1 26.9 38.4	26.3% 4010 2350 3590 4050 4840 3560
COEFFICIENT O Analyses performed b 12/10/00 12/11/00 12/11/00 12/12/00 12/12/00 12/13/00 12/13/00 12/13/00 12/14/00	F VARIATION by ELS. 2000-0785 2000-0786 2000-0787 2000-0788 2000-0789 2000-0790	38.4% 35.6 19.5 31.2 28.9 19.1 20.2	NA <0.65 <0.61 <0.66 <0.68 <0.67 <0.68	9.8% 36.0 23.1 35.5 42.7 36.2 35.9	24.0% 54.1 48.3 66.2 63.1 92.6 68.0 69.6	18.0% 1300 826 990 861 1080 1160 938	19.5% 12.00 6.71 5.09 6.72 5.84 7.50 8.31	79.3% 42.0 36.2 60.0 52.1 419.0 64.6 38.1	50.1% 1.40 1.20 1.80 1.60 1.80 1.60	13.7% 57.0 27.8 49.5 36.1 26.9 38.4 24.2	26.3% 4010 2350 3590 4050 4840 3560 2960
COEFFICIENT O Analyses performed b 12/10/00 12/11/00 12/12/00 12/12/00 12/13/00 12/13/00 12/13/00 12/14/00	F VARIATION by ELS. 2000-0785 2000-0786 2000-0787 2000-0788 2000-0789 2000-0790 2000-0791	38.4% 35.6 19.5 31.2 28.9 19.1 20.2 19.6	NA <0.65 <0.61 <0.66 <0.68 <0.67 <0.68 <0.67	9.8% 36.0 23.1 35.5 42.7 36.2 35.9 36.1	24.0% 54.1 48.3 66.2 63.1 92.6 68.0 69.6 71.6	18.0% 1300 826 990 861 1080 1160 938 1160	19.5% 12.00 6.71 5.09 6.72 5.84 7.50 8.31 7.44	79.3% 42.0 36.2 60.0 52.1 419.0 64.6 38.1 64.2	50.1% 1.40 1.20 1.80 1.60 1.80 1.60 1.80 1.80	13.7% 57.0 27.8 49.5 36.1 26.9 38.4 24.2 35.3	26.3% 4010 2350 3590 4050 4840 3560 2960 2980
COEFFICIENT O Analyses performed b 12/10/00 12/11/00 12/11/00 12/12/00 12/12/00 12/13/00 12/13/00 12/13/00 12/14/00	F VARIATION by ELS. 2000-0785 2000-0786 2000-0787 2000-0788 2000-0789 2000-0790 2000-0791 2000-0792	38.4% 35.6 19.5 31.2 28.9 19.1 20.2 19.6 28.5	NA <0.65 <0.61 <0.66 <0.68 <0.67 <0.68 <0.67 <0.68 <0.67 <0.68	9.8% 36.0 23.1 35.5 42.7 36.2 35.9 36.1 32.4	24.0% 54.1 48.3 66.2 63.1 92.6 68.0 69.6	18.0% 1300 826 990 861 1080 1160 938	19.5% 12.00 6.71 5.09 6.72 5.84 7.50 8.31	79.3% 42.0 36.2 60.0 52.1 419.0 64.6 38.1	50.1% 1.40 1.20 1.80 1.60 1.80 1.60	13.7% 57.0 27.8 49.5 36.1 26.9 38.4 24.2	26.3% 4010 2350 3590 4050 4840 3560 2960

STANDARD DEVIATION	25.1	<u>NA</u>	33.6	62.6	1884	7.07	87	1.64	04 7		
COEFFICIENT OF ATTON	5.5	NA	5.3	13.8	2513	1 01	111	1.64	34.7	3492	
COEFFICIENT OF VARIATION	22.1%	NA	15.7%	22.0%	133.4%	27.40/		0.20	10.6	710	
A					100,470	27.1%	127.8%	11.9%	30.5%	20.3%	

SAMPLE COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium		Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
03/19/01	01-0167	11.3	0.3	28.2	55.7	860	3.15	50.1	0.86	25.5	2660
03/19/01	01-0168	8.3	0.490	20.1	67.6	1080	2.85	29.3	1.00	23.1	2450
03/20/01	01-0169	12.2	0.280	26.9	48.8	813	<u>5</u> .00	31.3	1.60	20.3	2230
03/20/01	01-0170	14.6	0.280	22.5	50.1	555	2.59	44.9	1.40	19.6	2190
03/21/01	01-0171	11.7	<0.19	23.0	33.7	458	4.10	32.2	1.30	15.3	2080
03/21/01	01-0172	10.6	0.340	26.8	46.0	574	5.63	36.7	1.70	27.0	6490
03/22/01	01-0173	15.5	0.350	41.4	87.8	746	4.73	96.0	1.20	31.4	2830
03/22/01	01-0174	8.3	0.370	22.2	45.1	511	4.72	63.6	1.20	26.9	2100
03/23/01	01-0175	11.4	<0.19	18.3	38.5	899	3.84	48.0	3.50	28.5	2680
03/23/01	01-0176	11.3	0.270	32.9	39.0	743	4.41	60.4	1.30	19.7	2690
									1.00	10.1	2030
		11.5	0.271	26.2	51.2	723.9	4.1	49.3	1.5	23.7	2840.0
STANDARD DEV COEFFICIENT O		2.2	0.1	6.5	15.2	187.6	0.9	19.2	0.7	4.7	1244.0
COEPFICIENT O	FVARIATION	18.9%	19.7%	24.7%	29.7%	25.9%	22.9%	39.1%	46.9%	19.9%	43.8%
Analyses performed b	y ELS.										
12/10/01	01-0777	45.8	<0.65	58.3	42.8	3760	7.60	51. 9	3.80	37.7	4880
12/10/01	01-0778	24.0	<0.64	33.6	39.6	672	7.80	27.7	1.90	32.2	3390
12/11/01	01-0779	28.8	<0.69	59.0	63.3	1200	9.30	49.4	2.80	31.0	4640
12/11/01	01-0780	27.2	<1.6	42.4	60.0	944	6.10	48.2	2.90	28.5	5040
12/12/01	01-0781	26.8	<0.69	37.3	53.9	799	5.60	64.8	3.70	41.7	
12/12/01	01-0782	30.7	<0.62	46.8	41.9	965	7.60	43.5	4.00		3800
12/13/01	01-0783	31.3	<0.63	50.6	38.4	815	6.60			28.8	4540
12/13/01	01-0784	32.1	< 0.69	46.6	44.9	1740		40.7	2.80	33.5	3890
12/14/01	01-0785	47.6	<0.71	104.0	49.9		2.80	53.3	2.90	28.1	3900
12/14/01	01-0786	18.7	<0.68			1660	2.70	38.5	4.10	40.4	5590
			-0.00	33.0	59.5	1480	1.80	44.3	2.20	53.8	3060

AVERAGE				·		-				
	31.3	NA	51.2	49.4	1403.5	58	46.2	24	05.0	10.00
STANDARD DEVIATION	8.6	NA	19.6	07	862.0	0.6		3.1	35.6	4273.0
COEFFICIENT OF VARIATION	27.3%	and the second	the second s	0.7	And the second se	2.4	<u>9.4</u>	0.7	7.7	752.2
	21.3%	NA	38.4%	17.7%	61.4%	41.6%	20.4%	23.1%	21.5%	the second s
							140.170	20.170	21.3%	17.6%

COLLECTION DATE	LAB #	As Arsenic	Be Bervllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
05/06/02	02-0241	30.7	<0.62	37.6	62.4	911	5.80	91.4	1.80	38.8	3310
05/06/02	02-0242	25.6	<0.64	29.0	57.5	732	2.80	79.5	1.50	T	
05/07/02	02-0243	47.3	< 0.61	52.0	55.6	937	5.50	47.3	*****	31.3	3630
05/07/02	02-0244	27.1	<0.61	49.6	114.0	769	8.10		1.90	29.3	4300
05/08/02	02-0245	29.6	<0.67	57.3	79.0	1200		66.3	1.40	32.8	4010
05/08/02	02-0246	23.5	<0.65	30.5	66.8	835	7.70	70.2	2.00	38.0	5100
05/09/02	02-0247	37.0	<0.63	34.0			2.40	76.9	0.71	30.6	3100
05/09/02	02-0248	23.6	<0.63		70.7	975	4.30	37.7	1.20	30.2	2760
05/10/02	02-0249	44.9	<0.65	<u>23.7</u> 42.4	<u>46.5</u> 55.1	751	2.90	35.6	1.20	23.4	2610
05/10/02	02-0250	57.4	<0.67	59.9		912	7.50	35.3	2.40	31.3	3660
	01 0200	07.4	<u> </u>		73.1	962	6.80	39.3	2.50	32.2	4990
AVERAGE		34.7	NA	41.6	68.1	898.4	5,4	58.0	17	31.8	3747.0
STANDARD DEV		11.0	NA	12.0	17.9	131.5	2.1	20.1	0.5	4.1	815.4
						the state of the s	the second s				010.4
COEFFICIENT O		31.8%	NA	28.7%	26.3%	14.6%	38.2%	34.7%	32.2%	13.0%	21.8%
Analyses performed by	y ELS.							34.7%	32.2%	13.0%	21.8%
Analyses performed by	y ELS. 02-0767	44.7	<1.34	57.6	60.9	14.6% 1310	<u>38.2%</u> 6.02	34.7% 56.8	32.2%	<u>13.0%</u> 45.3	21.8% 5380
Analyses performed b 12/02/02 12/02/02	y ELS. 02-0767 02-0768	44.7 21.8	<1.34 <1.34	57.6 32.4							
Analyses performed b 12/02/02 12/02/02 12/03/02	y ELS. 02-0767 02-0768 02-0769	44.7 21.8 27.6	<1.34	57.6	60.9	1310	6.02	56.8	2.35	45.3	5380 3020
Analyses performed b 12/02/02 12/02/02 12/03/02 12/03/02	y ELS. 02-0767 02-0768 02-0769 02-0770	44.7 21.8 27.6 24.7	<1.34 <1.34	57.6 32.4	60.9 46.8	<u>1310</u> 943	6.02 5.37	56.8 87.1	2.35 <1.34	45.3 38.2 35.1	5380 3020 2430
Analyses performed by <u>12/02/02</u> <u>12/02/02</u> <u>12/03/02</u> <u>12/03/02</u> <u>12/04/02</u>	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771	44.7 21.8 27.6	<1.34 <1.34 <1.21	57.6 32.4 28.9	60.9 46.8 36.6	1310 943 1060	6.02 5.37 10.80	56.8 87.1 31.5	2.35 <1.34 1.26 <1.45	45.3 38.2 35.1 82.1	5380 3020 2430 3880
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02	y ELS. 02-0767 02-0768 02-0769 02-0770	44.7 21.8 27.6 24.7	<1.34 <1.34 <1.21 <1.45	57.6 32.4 28.9 39.1	60.9 46.8 36.6 47.9	1310 943 1060 868	6.02 5.37 10.80 8.80	56.8 87.1 31.5 33.7 49.4	2.35 <1.34 1.26 <1.45 2.11	45.3 38.2 35.1 82.1 31.1	5380 3020 2430 3880 3370
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771	44.7 21.8 27.6 24.7 35.6	<1.34 <1.34 <1.21 <1.45 <0.68	57.6 32.4 28.9 39.1 40.4	60.9 46.8 36.6 47.9 57.7	1310 943 1060 868 2260 1820	6.02 5.37 10.80 8.80 6.47 19.90	56.8 87.1 31.5 33.7 49.4 55.6	2.35 <1.34 1.26 <1.45 2.11 2.19	45.3 38.2 35.1 82.1 31.1 30.9	5380 3020 2430 3880 3370 3170
Analyses performed by 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772	44.7 21.8 27.6 24.7 35.6 33.6	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72	57.6 32.4 28.9 39.1 40.4 45.3	60.9 46.8 36.6 47.9 57.7 48.5 49.7	1310 943 1060 868 2260 1820 2230	6.02 5.37 10.80 8.80 6.47 19.90 12.20	56.8 87.1 31.5 33.7 49.4 55.6 54.4	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72	45.3 38.2 35.1 82.1 31.1 30.9 32.7	5380 3020 2430 3880 3370 3170 4220
Analyses performed by 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773	44.7 21.8 27.6 24.7 35.6 33.6 32.9	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71	57.6 32.4 28.9 39.1 40.4 45.3 60.9	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3	1310 943 1060 868 2260 1820 2230 1860	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5	5380 3020 2430 3880 3370 3170 4220 3340
Analyses performed by 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3	1310 943 1060 868 2260 1820 2230 1860 1320	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3	5380 3020 2430 3880 3370 3170 4220 3340 2700
Analyses performed by 12/02/02 12/03/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/06/02 12/06/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3	1310 943 1060 868 2260 1820 2230 1860	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5	5380 3020 2430 3880 3370 3170 4220 3340
Analyses performed by 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/06/02 12/06/02 XVERAGE	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0776	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1 30.0	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.72 <0.72 <0.63 <0.63 NA	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0 20.1 40.3	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3 45.4 49.7	1310 943 1060 868 2260 1820 2230 1860 1320	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3 36.3	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35 1.30	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3 29.5	5380 3020 2430 3880 3370 3170 4220 3340 2700 1480
Analyses performed by 12/02/02 12/03/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/06/02 12/06/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0776 ATION	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63 <0.63	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0 20.1	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3 45.4	1310 943 1060 868 2260 1820 2230 1860 1320 322	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52 3.31	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3	5380 3020 2430 3880 3370 3170 4220 3340 2700

Analyses performed by ELS.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Bervilium	Cd Cadmlum	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
08/02/03	15503164	18.0	<0.60	18.0	120.0	6500	1.60	270.0	<0.60	28.0	1700
06/02/03	15503165	25.0	<0.55	25.0	49.0	700	1.40	100.0	<0.55	29.0	15000
08/03/03	15503168	13,0	<0.57	16.0	23.0	1200	1.30	13.0	<0.57	12.0	1500
06/04/03	16103027	29.0	<0.65	33.0	40.0	910	3.20	130.0	<0.65	30.0	3800
06/04/03	16103028	19.0	<0.59	18.0	34.0	320	8.20	26.0	<0.59	14.0	1700
06/05/03	16103029	49.0	<0.66	44.0	62.0	870	5.10	47.0	<0.66	48.0	5100
06/05/03	16103030	42.0	<0.75	37.0	72.0	780	7.70	30.0	<0.75	31.0	3500
06/06/03	16103031	38.0	<0.63	38.0	54.0	750	4.30	50.0	<0.63	42.0	
06/06/03	16103032	45.0	<0.66	46.0	67.0	920	5.70	85.0	<0.66	28.0	<u>3500</u> 7200
06/07/03	16103026	71.0	<0.61	38.0	65.0	830	4.50	93.0	<0.61	39.0	5700
VERAGE		34.9		01.0	<u></u>	1000					
TANDARD DEVI	ATION	16.8	NA	31.3	58.6	1378.0	4.3	84.4	NA	30.1	4870.0
OEFFICIENT OF		40.1%	NA NA	10.6 34.0%	25.3 43.2%	1720.0 124.8%	2.4 _54.7%	71.3 84.5%	NA NA	10.7 35.5%	3809.7

Analyses performed by Upstate Laboratories inc.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
06/14/04	E1540	38.0	<1.2	31.0	53.0	980	3.60	47.0	1.00	32.0	4200
06/14/04	E1541	29.0	<1.1	25.0	48.0	730	1.40	28.0	0.83	23.0	2900
06/15/04	E1542	45.0	<1.2	33.0	78.0	1500	2.90	65.0	1.30	51.0	3600
06/15/04	E1543	51.0	<12	45.0	100.0	1100	7,70	120.0	<5.9	<59	4000
06/16/04	E2029	39,0	<1.2	45.0	62.0	1100	5.90	62.0	1.50	36.0	4300
06/16/05	E2030	40.0	<1.3	48.0	58.0	1300	3.90	410	2.60	29.0	5100
06/17/05	E2031	31.0	<1.2	39.0	67.0	790	4.30	44.0	1.50	30.0	4200
06/23/04	E2626	33.0	<1.2	38.0	68.0	970	4.60	43.0	2.20	30.0	3900
06/25/04	E2627	61.0	<1.3	98.0	85.0	1900	7.50	110.0	2.20	34.0	7800
06/27/04	E2628	54,0	<1.2	79.0	75.0	1200	3.90	58.0	2.10	42.0	4500
AVERAGE		T							······		
STANDARD DEVI	ATION	42.1	NA	48.1	69,4	1157.0	4.6	98.7	1.5	30.7	4470.0
COEFFICIENT OF		10.0	NA	21.7	14.8	328.9	1.9	107.4	0.7	12.6	1229.7
JOEFFICIENT OF	VARIATION	23.7%	NA	45.1%	21.4%	28.4%	40.9%	108.6%	48.8%	41.0%	27.5%

Analyses performed by O' Brien & Gere Laboratories, Inc.

SAMPLE COLLECTION DATE	LAB	As Arsenic	Be Beryllum	Cd Cadmlum	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Seleptum	V Vanadium	Zn Zinc
12/23/04	F1433	19.0	<1.3	36.0	44.0	730	5.50	37.0	0.93	28.0	
12/23/04	<u>F</u> 1434	23	<1.3	47.0	65.0	2500	7.10	37.0	1.50		5100
12/27/04	F1513	27.0	<1.1	44.0	50.0	1200	16.00	44.0	1.00	28.0	4600
12/27/04	F1514	25.0	<1.2	35.0	59.0	820	9.10	130.0		42.0	4600
12/28/04	F1515	20.0	<1.3	40.0	100.0	1500	6.10	45.0	1.80	30.0	6000
12/28/04	F1516	25.0	<1.4	50.0	67.0	860	5.80		1.00	44.0	4100
12/29/04	F1517	23.0	<1.2	41.0	48.0	1000		98.0	1.40	24.0	4400
12/29/04	F1518	27.0	<1.3	53.0	65.0		4.30	35.0	1.20	41.0	3900
12/30/04	F1519	18.0	<1.2	43.0	41.0	1800	5,70	58.0	1.60	36.0	
12/30/04	F1520	23.0	<1.2	43.0		770	6.00	34.0	1.00	23.0	3600
		20.0	<u> </u>	43.0	64.0	790	4.20	<u>5</u> 6.0	1.70	28.0	4300
ÆRAGE		23.0	NA	43.2	60.3	1197.0	7.0	57.4	10		
ANDARD DEVIA	TION	3.0	NÁ	5.4	18.1	549.0	3.3	30.2	1.3 0.3	32.4	4520.0
DEFFICIENT OF	VARIATION	13.0%	NA	12,5%	26.6%	45.9%	47.0%	52,7%	23.7%	22.6%	<u>633.7</u> 14.0%

Analyses performed by O' Brien & Gare Laboratories, Inc

SAMPLE							1		T		·
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	
05/16/05	0505100-001A	51.0	<1.1	51.0	64.0	1700	4.00	43.0	1.50	52.0	6200
05/16/05	0505100-002A	56.0	<1.2	49.0	74.0	1300	4.30	49.0	1.70	46.0	
05/17/05	0505100-003A	50.0	<1.1	56.0	80.0	1900	4.30	92.0	1.70	33.0	6100
05/17/05	0505100-004A	73.0	<1.2	75.0	83.0	2400	4.00	77.0	2.10	37.0	5900
05/18/05	0505131-001A	56.0	<1.1	62.0	84.0	1500	4.70	93.0	1.80		7600
05/18/05	0505131-002A	45.0	<1.2	62.0	72.0	2100	4.70	49.0	2.00	39.0	6200
05/19/05	0505131-003A	44.0	<1.2	58.0	65.0	1400	4.90	49.0	· · · · · · · · · · · · · · · · · · ·	32.0	5900
05/19/05	0505131-004A	59.0	<1.2	68.0	71.0	1600	5.90	<u>49.0</u> 55.0	1.50	35.0	5400
05/20/05	0505131-005A	50.0	<1.2	60.0	60.0	1600	0.75		1.70	36.0	7000
05/20/05	0505131-006A	53.0	<1.2	77.0	140	1800	6.10	61.0	1.10	47.0	<u>6100</u>
						1000	0.10	270	1.90	30.0	7600
AVERAGE		53.7	NA	61.8	79.3	1730.0	4.4	83.8	1.7	20.7	6400.0
STANDARD DEV	ATION	7.8	NA	8.8	21.6	316.4	1.4	64.4	0.3	38.7	6400.0
COEFFICIENT O	F VARIATION	14.6%	NA	14.3%	27.3%	18.3%	31.2%	76.9%	0.3 16.0%	<u>6.9</u> 17.8%	<u>707.1</u> 11.0%

Analyses performed by Life Science Laboratories, Inc

SAMPLE							1		1		
COLLECTION	LAB	As	Be	Cđ	Cr	Pb	Hg	l Ni	Se	l v l	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel		Vanadium	
12/12/05	0512118-001A	29.0	<1.2	49.0	61.0	1200	4.90	70.0	1.30	<120	
12/12/05	0512118-002A	24.0	<1.3	37.0	60.0	1900	3.10	49.0			8200
12/13/05	0512118-003A	20.0	<1.2	49.0	54.0	1400	3.90		1.60	26.0	3800
12/13/05	0512118-004A	25.0	<1.2	37.0	82.0	1300		230	0.86	37.0	4700
12/14/05	0603017-001A	18.0	<1.3	36.0			<0.12	73.0	1.30	<60	4000
12/14/05	0512118-006A	24.0	<1.2		53.0	1700	3.80	47.0	0.67	41.0	4400
12/15/05	0512142-001A	17.0		<u>37.0</u>	68.0	720	3.30	51	0.89	<60	3900
12/15/05	0512142-007A		<1.3	30.0	49.0	620	2.20	100	1.00	<63	3500
12/16/05		27.0	<1.2	50.0	59.0	1300	5.40	37.0	1.40	34.0	4700
12/16/05	0512142-003A	26.0	<1.4	41.0	67.0	1200	4.80	_ 50.0	2.00	<70	4100
12/10/05	0512142-004A	26.0	<1.3	55.0	<u>54.0</u>	1100	5.50	40.0	2.20	34.0	5700
											0100
VERAGE		23.6	NA	42.1	60.7	1244.0	4.1	74.7	1.3	34.4	4700.0
TANDARD DEV		3.8	NA	7.7	9.1	368.4	1.1	54.8			4700.0
OEFFICIENT O	F VARIATION	16.0%	NA	18.2%	15.1%	29.6%	26.8%	73.3%	0.5	4.9	1306.9
						20.070	/0.0 /0	13.3%	35.8%	14.2%	27.8%

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
04/10/06	0604077-001A	50.0	<1.2	83.0	57.0	1800	2.50	44.0	1.80	34.0	6400
04/11/06	0604077-002A	60.0	<1.3	80.0	75.0	1700	7.60	46.0	1.40	31.0	6100
04/12/06	0604090-001A	34.0	<1.2	39.0	96.0	1100	1.20	22.0	1.30	47.0	5200
04/13/06	0604090-002A	47.0	<1.2	61.0	51.0	1200	4.00	84.0	1.90	55.0	5400
04/14/06	0604090-003A	47.0	<1.2	79.0	61.0	1500	9.90	45.0	1.40	30.0	5800
NA	NA								1.40	00.0	5000
NA	NA			[
NA	NA										
NA	NA										
NA	NA				····			****			

AVERAGE	47.6	NA	68.4	68.0	1460.0	5.0	48.2	1.6	39.4	5780.0
STANDARD DEVIATION	8.3	NA	16.6	16.1	272.8	3.2	20.0	0.2	9.9	440.0
COEFFICIENT OF VARIATION	17.5%	NA	24.3%	23.6%	18.7%	64.3%	41.5%	15.5%	25.1%	7.6%

Analyses performed by Life Science Laboratories, Inc

1

Ì

•

SAMPLE		1									· · · · · · · · · · · · · · · · · · ·
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	
08/07/06	0608136-001A	51.0	<1.2	47.0	46.0	1000	3.30	140.0	1.20	34.0	4400
08/08/06	0608136-002A	51.0	<1.2	54.0	51.0	1400	4.90	44.0	1.50	34.0	5300
08/09/06	0608136-003A	29.0	<1.3	34.0	38.0	630	4.00	30	0.95	33.0	3000
08/10/06	0608136-004A	40.0	<1.2	48.0	57.0	1900	2.90	130.0	1.20	45.0	4000
08/11/06	0608136-005A	35.0	<1.2	42.0	71.0	1100	1.30	45.0	0.75	<u> </u>	
08/14/06	0608136-006A	44.0	<1.3	44.0	69.0	1000	3.00	85	1.20		4200
08/15/06	0608136-007A	33,0	<1.1	30.0	78.0	580	0.29	170	· · · · · · · · · · · · · · · · · · ·	54.0	3900
08/16/06	0608136-008A	29.0	<1.2	31.0	36.0	690	<0.12		0.67	90.0	3200
08/17/06	0608136-009A	32.0	<1.1	41.0	55.0	1100	<0.12 <0.11	<u> </u>	0.67		4300
08/18/06	0608136-010A	27.0	<1.2	33.0	57.0			43.0	0.76	40.0	7600
				00.0	07.0	2800	2.60	78.0	0.80	45.0	3400
AVERAGE	······································	37.1								-	
STANDARD DEV			NA	40.4	55.8	1220.0	2.2	82.1	1.0	47.3	4330.0
COEFFICIENT OF		8.5	<u>NA</u>	7.7	13.2	644.6	1.6	46.0	0.3	16.5	1259.4
	VARIATION	22.9%	<u>NA</u>	19.1%	23.6%	52.8%	73.9%	56.0%	28.1%	35.0%	29.1%

LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercurv	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
0704181-001A	40.0	<1.2	51.0	62.0				<u> </u>		4700
0704181-002A	36.0	<1.2	64.0	51.0						5100
0704181-003A	39.0	<1.2	70.0							14000
0704181-004A	55.0	<1.3	120	74.0	1800					8400
0704181-005A	62.0	<1.4	130							8300
0704181-006A	46.0	<1.3	79.0	81.0		1		1		6000
0704186-001A	53.0	<1.3	130	62.0	2100	1		<u> </u>		8500
0704186-002A	45.0	<1.3	87,0		1700	1				7200
0704186-003A	44.0	<1.3				1				5800
0704186-004A	41.0	<1.2	53.0	93	1200	4.60			·····	4800
	0704181-001A 0704181-002A 0704181-003A 0704181-004A 0704181-005A 0704181-006A 0704186-001A 0704186-002A 0704186-003A	D704181-001A 40.0 D704181-002A 36.0 D704181-003A 39.0 D704181-003A 39.0 D704181-004A 55.0 D704181-005A 62.0 D704181-006A 46.0 D704186-001A 53.0 D704186-002A 45.0 D704186-003A 44.0	# Arsenic Beryllium 0704181-001A 40.0 <1.2	# Arsenic Beryllium Cadmium 0704181-001A 40.0 <1.2	# Arsenic Beryllium Cadmium Chromium 0704181-001A 40.0 <1.2	# Arsenic Beryllium Cadmium Chromium Lead 0704181-001A 40.0 <1.2	# Arsenic Beryllium Cadmium Chromium Lead Mercury 0704181-001A 40.0 <1.2	# Arsenic Beryllium Cadmium Chromium Lead Mercury Nickel 0704181-001A 40.0 <1.2	# Arsenic Beryllium Cadmium Chromium Lead Mercury Nickel Selenium 0704181-001A 40.0 <1.2	# Arsenic Beryllium Cadmium Chromium Lead Mercury Nickel Selenium Vanadium 0704181-001A 40.0 <1.2

AVERAGE	46.1	<u>NA</u>	86.1	90.3	1600	6.9	90.1	1.9	28.4	7280
STANDARD DEVIATION	7.8	NA	28.7	57.9	300	1.8	47.1	0.4	7.1	2652
COEFFICIENT OF VARIATION	16.8%	NA	33.3%	64.1%	18.8%	26.7%	52.3%	20.8%	25.1%	36.4%
										and the second

Analyses performed by Life Science Laboratories, Inc

......

-

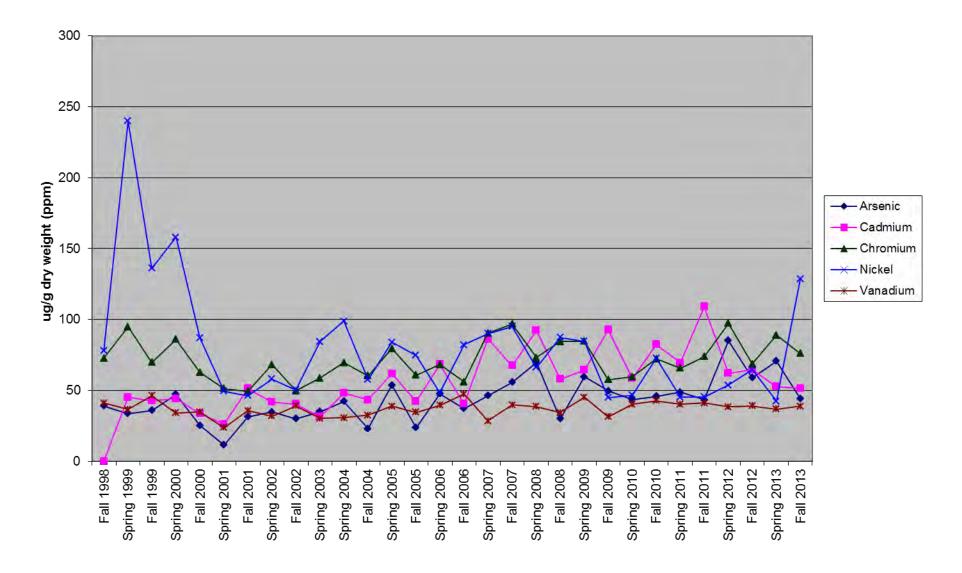
SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
08/09/07	0708082-001A	48.0	<1.2	48.0	65.0	2700	4.30	70.0	1.80	49.0	4000
08/10/07	0708082-002A	47.0	<1.2	36.0	330	990	2.90	290	2.60	49.0	4000
08/14/07	0708121-001A	44.0	<1.2	55.0	52.0	1100	5.20	110	2.00	37.0	
08/14/07	0708121-002A	45.0	<1.2	57.0	69.0	1400	6.40	51.0	2.70	46.0	4700
08/15/07	0708121-003A	39.0	<1.2	40,0	190	2500	2.90	160	2.20	42.0	5200
08/15/07	0708121-004A	65.0	<1.3	110	49.0	180	8.20	37	2.30	33.0	4100
08/16/07	0708121-005A	60.0	<6.5	70.0	57.0	980	7.20	120	<6.5		7300
08/16/07	0708121-006A	86.0	<1.4	120	49.0	3400	12.00	36.0	2.70	<32	5300
08/17/07	0708121-007A	48.0	<1.3	59.0	53.0	1300	5.80	40.0	2.30	31.0	8800
08/17/07	0708121-008A	74.0	<1.5	79.0	53.0	1400	7.40	35.0		41.0	5900
						1400	<u> </u>	30.0	2.20	29.0	6600
VERAGE		55.6	NA	67.4	96.7	1595	6.2	94.9	2.2	00 7	
TANDARD DEV		14.4	NA	26.8	87.7	919	2.6		2.3	39.7	5590
OEFFICIENT O	F VARIATION	26.0%	NA	39.7%	90.7%	57.6%	41.4%	76.9	0.3	7.2	1505
						01.070	41,470	81.0%	12.6%	18.1%	26.9%

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
04/25/08	0805009-001A	73.0	<1.3	170.0	60.0	2300	13.00	34.0	1.50	35.0	9900
04/28/08	0805009-002A	91.0	<1.2	100.0	50.0	1600	6.50	62.0	1.80	26.0	7200
04/29/08	0805009-003A	54.0	<1.2	47.0	72.0	1100	3.00	200.0	<1.2	44.0	4700
04/29/08	0805009-004A	98.0	<1.4	120	85.0	2300	9.80	78.0	1.90	38.0	8100
04/30/08	0805021-001A	48.0	<1.3	61	88.0	1300	3.70	83.0	<1.3	49.0	4900
04/30/09	0805021-002A	80.0	<1.3	110.0	110.0	1500	12.00	36.0	2.00	32.0	7800
05/01/08	0805021-003A	47.0	<1.2	52	69.0	990	3.10	41.0	<1.2	44.0	4800
05/01/08	0805021-004A	95.0	<1.3	130.0	58.0	2000	9.40	33	2.60	25.0	10000
05/02/08	0805021-005A	38.0	<1.2	45.0	72	840	3.50	47	<1.2	39.0	6600
05/02/08	0805021-006A	72.0	<1.3	88.0	67	1500	6.20	46	1.70	53.0	8300
											0000
AVERAGE		69.6	NA	92.3	73.1	1543	7.0	66.0	1.9	38.5	7230
STANDARD DEV	IATION	20.6	NA	39.4	16.5	492	3.6	47.8	0.3	8.8	1875
COEFFICIENT O	F VARIATION	29.6%	NA	42.7%	22.5%	31.9%	51.3%	72.4%	17.9%	22.9%	25.9%

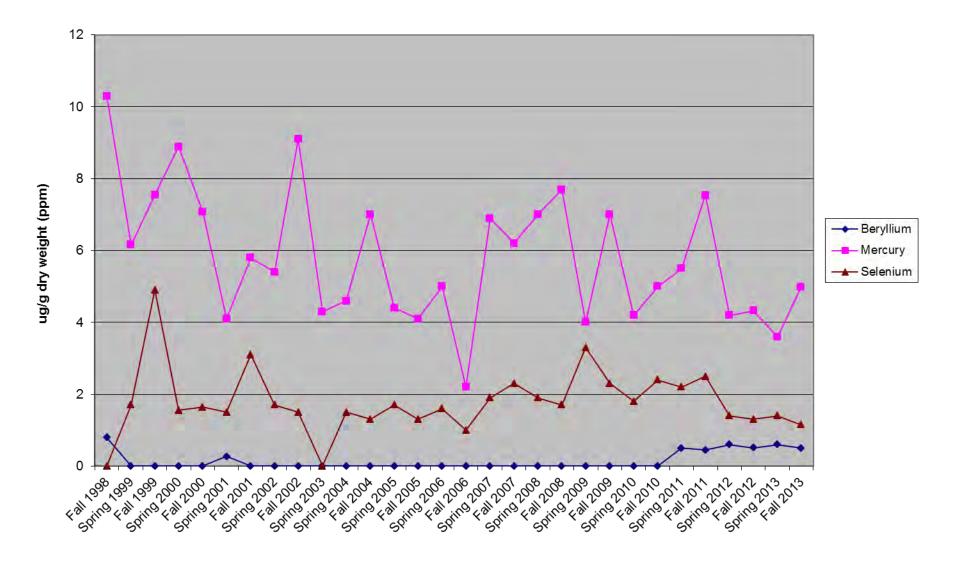
Analyses performed by Life Science Laboratories, Inc

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
12/19/08	0812217-001A	33.0	<1.4	68.0	91.0	1400	11.00	59.0	1.50	28.0	5900
12/19/08	0812217-002A	26.0	<1.3	64.0	70	1900	7.80	77	1.50	23.0	4800
12/20/08	0812217-003A	35.0	<1.4	80.0	39.0	1100	8.30	72	2.10	23.0	6600
12/22/08	0812217-004A	31.0	<1.2	29.0	76.0	670	5.90	48.0	<1.2	61.0	
12/23/08	0812217-005A	<27	<27	60.0	190	1000	14.00	190	<27	57.0	2900
12/23/08	0812217-006A	27.0	<1.3	34	56.0	1100	4.10	45	<1.3		4100
12/24/08	0812217-007A	24.0	<1.3	43.0	150.0	680	6.50	260	1.60	32,0	3000
12/29/08	0901008-001A	51.0	<1.3	89	58.0	3600	7.50	38.0		46.0	4000
12/30/08	0901008-002A	24.0	<1.3	65.0	55.0	1600	7.50		1.70	24.0	6400
12/30/08	0901008-003A	19.0	<1.3	48.0	58.0	1200		33.0	1.50	18.0	4900
					00.0	1200	4.80	<u>51.0</u>	<1.3	30.0	3700
AVERAGE		30.0	NA	58.0	84.3	1425	77	07.0		·	
STANDARD DEV	IATION	8.8	NA	18.4	45.7		7.7	87.3	1.7	34.3	<u>4630</u>
COEFFICIENT OF	VARIATION	29.3%	NA	31.7%		810	2.8	71.8	0.2	14.3	1262
Applyment of the				01.770	54.2%	56.8%	35.9%	82.2%	13.0%	41.6%	27.3%

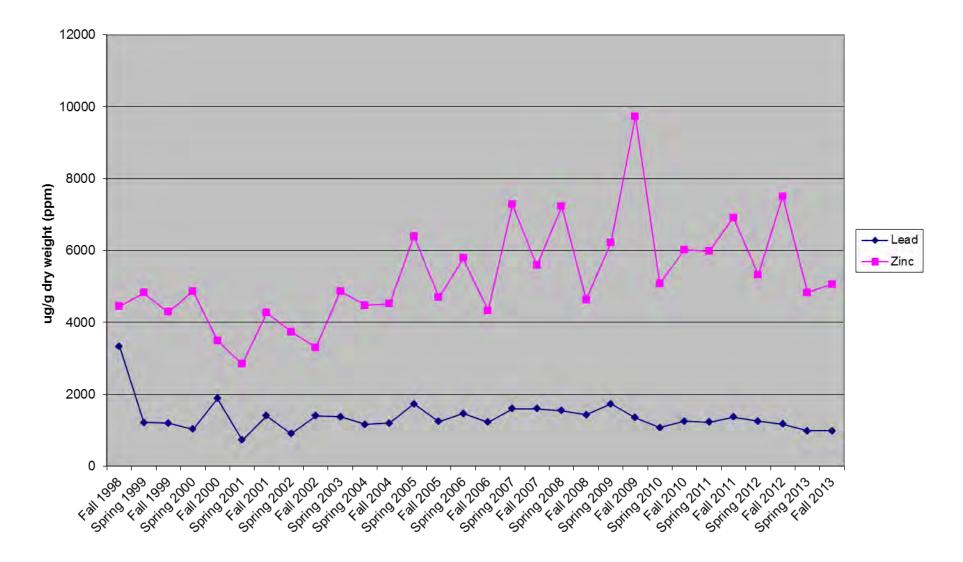
Sample Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn
5/11/2009	0905077-001A	46	<1.2								Zinc
5/11/2009	0905077-002A			39	82	1200	3.1	60	1.3	49	4500
		63	<1.3	78	94	1300	3.8	46	5	42	5900
5/12/2009	0905077-003A	80	<1.2	88	73	1500	4.3	34	6.3	45	6800
5/12/2009	0905077-004A	100	<1.2	100	76	4600	6.9	120	6.6	33	8600
5/13/2009	0905106-001A	62	<1.2	68	76	1400	4.5	79	3	46	5800
5/13/2009	0905106-002A	49	<1.2	41	170	1200	2.4	210	1.4	68	5100
5/14/2009	0905106-003A	59	<1.3	74	66	1900	6.7	71	2.6	38	10000
5/14/2009	0905106-004A	48	<1.2	50	65	1200	3.3	67	2.0		
5/15/2009	0905106-005A	46	<1,2	63	71	2100			{	42	5200
5/15/2009	905106-008A	43	<1.2	42	71	930	4	64	1.5	39	5200
				72	12	930	2.2	95	<1.2	48	5100
Average		59.6		<u> </u>						····-	
			NA	64,3	84.5	1733.0	4.0	84.6	3.3	45.0	6220.0
Standard Devia		18.1	NA	21.1	31.2	1066.3	1.4	50.2	2.1	9.4	1767.5
Coefficient of v	ariation	30.4%	NA	32.9%	36.9%	61.5%	35.9%	59.4%	63.8%	21.0%	28.4%
		·									·······
Sample	T				· - · · · · · · · · · · · · · · · · · ·		r	·			
Collection	Lab	As	Be	Cd	Сг	РЬ	hin.		-		
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Hg	Ni	Se	V	Zn
10/16/2009	0910091-001A	36	<1.2	55	72	770	Mercury 3.9	Nickel	Selenium	Vanadium	Zinc
10/19/2009	0910091-002A	67	<1.3	110	51	2000	7.6	59 31	2.5	32	32,000
10/20/2009	0910091-003A	44	<1.3	64	47	890	5.2	37	1.5	36	8400
10/20/2009	0910091-004A	66	<1.3	120	55	1700	9.9	60	<1.3 1.6	29	5200
10/21/2009	0910113-001A	55	<1.2	89	57	1500	3.2	38	1.0	28	8000
10/21/2009	0910113-002A	60	<1.3	120	48	1500	3.8	31	1.8	43	6800
10/22/2009	0910113-003A	36	<1.2	54	46	850	9.8	30		33	8200
10/22/2009	0910113-004A	37	<1.2	78	95	1100	4.6	<u>30</u>	<1.2	38	4900
10/23/2009	0910113-005A	42	<1.3	98	55	1300	4.0	67 51	3	31	6200
10/23/2009	0910113-006A	54	<1.3	140	48	1900	<u> </u> 11	44	3.3	23	7600
					<u>_</u>	,	L	44	3.7	20	10000
Average		49.7	NA	92.8	57.4	1351	7	44.8			
Standard De		12.2	NA	29.9	15.3	441.6	3.2	13.6	2.3	31.3	9730
Coefficient of	f variation	24.6%	NA	32.2%	26.6%	32.7%	45.6%	30.4%	0.9	6.8	7976.1
							10.070	50.470	40.4%	21.8%	82.0%


Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
5/24/2010	1006054-001A	55	<1.2	77	68	1300	4.1	58	2.3	47	6500
5/25/2010	1006054-002A	40	<1.2	52	57	780	2.9	52	1.3	41	4500
5/25/2010	1006054-003A	52	<1.2	87	57	1300	5	37	2	26	7600
5/26/2010	1006054-004A	28	· <1.1	41	40	940	2.8	29	<1.1	32	3900
5/26/2010	1006054-006A	37	<1.3	62	58	1900	4.2	54	<1.3	44	5400
5/27/2010	1006054-007A	32	<1.2	46	46	610	5.3	66	<1.2	31	3500
5/27/2010	1006054-008A	43	<1.3	71	66	1400	7.3	48	1.6	35	
5/28/2010	1006054-009A	38	<1.2	39	69	680	4.3	33			5200
5/28/2010	1006054-010A	46	<1,2	55	69	690	4.5	57	<1.2 <1.2	65	4000
5/29/2010	1006054-011A	64	<1.2	54	66	960	2.2	33	<1.2	40	5300
					0		2.2		\$1.Z	40	4900
Average		43.5	NA	58.4	59.6	1076.0	4,2	46.7	4.0		
Standard Devia	tion	11.0	NA	15.8	10.1				1.8	40.1	5080.0
Coefficient of va						396.2	1.5	12.8	0.4	10.8	1245.3
		25.3%	NA	27.0%	16.9%	36.8%	34.7%	27.4%	24.4%	27.0%	24.5%
Sample		23.3%		27.0%	16.9%	36.8%	34.7%	27.4%	24.4%	27.0%	24.5%
Sample Collection	Lab	As	Be	27.0% Cd	16.9% Cr	36.8%	34,7% Hg	27.4% Ni	24.4% Se	27.0% V	24.5% Zn
Sample Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium							
Sample Collection Date 9/27/2010	Lab # 1010020-001A	As Arsenic 79	Be Beryllium <1.2	Cd Cadmium 82	Cr Chromium 83	Рb	Hg	Ni	Se	v	Zn
Sample Collection Date 9/27/2010 9/28/2010	Lab # 1010020-001A 1010020-002A	As Arsenic 79 38	Be Beryllium <1.2 <1.2	Cd Cadmium 82 93	Cr Chromium 83 100	Pb Lead 1200 830	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010	Lab # 1010020-001A 1010020-002A 1010020-003A	As Arsenic 79 38 35	Be Beryllium <1.2 <1.2 <1.3	Cd Cadmium 82 93 95	Cr Chromium 83 100 45	Pb Lead 1200 830 1200	Hg Mercury 5.7	Ni Nickel 200	Se Selenium 4.9	V Vanadium 33	Zn Zinc 6,400
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010	Lab # 1010020-001A 1010020-002A 1010020-003A 1010020-004A	As Arsenic 79 38 35 37	Be Beryllium <1.2 <1.2 <1.3 <1.2	Cd Cadmium 82 93 95 67	Cr Chromium 83 100 45 64	Pb Lead 1200 830 1200 1000	Hg Mercury 5.7 3.3	Ni Nickel 200 46	Se Selenium 4.9 2.2	V Vanadium 33 50	Zn Zinc 6,400 5200
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010	Lab # 1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A	As Arsenic 79 38 35 37 58	Be Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2	Cd Cadmium 82 93 95 67 84	Cr Chromium 83 100 45 64 56	Pb Lead 1200 830 1200 1000 1200	Hg Mercury 5.7 3.3 9 5 8	Ni Nickel 200 46 36 91 38	Se Selenium 4.9 2.2 1.5	V Vanadium 33 50 29	Zn Zinc 6,400 5200 6000
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010	Lab # 1010020-001A 1010020-002A 1010020-003A 1010020-006A 1010020-006A 1010020-007A	As Arsenic 79 38 35 37 58 49	Be Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2	Cd Cadmium 82 93 95 67 84 93	Cr Chromium 83 100 45 64 56 70	Pb Lead 1200 830 1200 1000 1200 1600	Hg Mercury 5.7 3.3 9 5 5 8 4.9	Ni Nickel 200 46 36 91 38 63	Se Selenium 4.9 2.2 1.5 1.6	V Vanadium 33 50 29 39	Zn Zinc 6,400 5200 6000 5800
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010	Lab # 1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A	As Arsenic 79 38 35 37 58 49 61	Be Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2 <1.2 <1.4	Cd Cadmium 82 93 95 67 84 93 140	Cr Chromium 83 100 45 64 56 70 51	Pb Lead 1200 830 1200 1000 1200 1600 1800	Hg Mercury 5.7 3.3 9 5 5 8 4.9 3.3	Ni Nickel 200 46 36 91 38 63 54	Se Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3	V Vanadium 33 50 29 39 40	Zn Zinc 6,400 5200 6000 5800 6500
Sample Collection Date 9/27/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010	Lab # 1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A 1010020-009A	As Arsenic 79 38 35 37 58 49 61 30	Be Beryllium <1.2 <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2 <1.2 <1.4 <1.3	Cd Cadmium 82 93 95 67 84 93 140 48	Cr Chromium 83 100 45 64 56 70 51 98	Pb Lead 1200 830 1200 1000 1200 1600 1800 1099	Hg Mercury 5.7 3.3 9 5 5 8 4.9 3.3 3.5	Ni Nickel 200 46 36 91 38 63 54 85	Se Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3 1.5	V Vanadium 33 50 29 39 40 32	Zn Zinc 6,400 5200 6000 5800 6500 6600
Sample Collection Date 9/27/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010	Lab # 1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A	As Arsenic 79 38 35 37 58 49 61 30 35	Be Beryllium <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2	Cd Cadmium 82 93 95 67 84 93 140 48 49	Cr Chromium 83 100 45 64 56 70 51 98 75	Pb Lead 1200 830 1200 1000 1200 1600 1800 1099 1100	Hg Mercury 5.7 3.3 9 5 5 8 4.9 3.3 3.5 2.1	Ni Nickel 200 46 36 91 38 63 54 85 72	Se Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3 1.5 1.8	V Vanadium 33 50 29 39 40 32 29 70 60	Zn Zinc 6,400 5200 6000 5800 6500 6600 9000
Sample Collection Date 9/27/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010	Lab # 1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A 1010020-009A 1010020-010A	As Arsenic 79 38 35 37 58 49 61 30	Be Beryllium <1.2 <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2 <1.2 <1.4 <1.3	Cd Cadmium 82 93 95 67 84 93 140 48	Cr Chromium 83 100 45 64 56 70 51 98	Pb Lead 1200 830 1200 1000 1200 1600 1800 1099	Hg Mercury 5.7 3.3 9 5 5 8 4.9 3.3 3.5	Ni Nickel 200 46 36 91 38 63 54 85	Se Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3 1.5	V Vanadium 33 50 29 39 40 32 29 70	Zn Zinc 6,400 5200 6000 5800 6500 6600 9000 4400
Sample Collection Date 9/27/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010	Lab # 1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A 1010020-009A 1010020-010A	As Arsenic 79 38 35 37 58 49 61 30 35	Be Beryllium <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2	Cd Cadmium 82 93 95 67 84 93 140 48 49 73	Cr Chromium 83 100 45 64 56 70 51 98 75 80	Pb Lead 1200 830 1200 1000 1200 1600 1800 1099 1100 1500	Hg Mercury 5.7 3.3 9 5 8 4.9 3.3 3.5 2.1 5.2	Ni Nickel 200 46 36 91 38 63 54 85 72 42	Se Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3 1.5 1.8 2.2	V Vanadium 33 50 29 39 40 32 29 70 60 43	Zn Zinc 6,400 5200 6000 5800 6500 6600 9000 4400 4800 5500
Sample Collection Date 9/27/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010	Lab # 1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-009A 1010020-010A 1010020-011A	As Arsenic 79 38 35 37 58 49 61 30 35 35	Be Beryllium <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2	Cd Cadmium 82 93 95 67 84 93 140 48 49	Cr Chromium 83 100 45 64 56 70 51 98 75	Pb Lead 1200 830 1200 1000 1200 1600 1800 1099 1100	Hg Mercury 5.7 3.3 9 5 5 8 4.9 3.3 3.5 2.1	Ni Nickel 200 46 36 91 38 63 54 85 72	Se Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3 1.5 1.8	V Vanadium 33 50 29 39 40 32 29 70 60	Zn Zinc 6,400 5200 6000 5800 6500 6600 9000 4400 4800

Sample Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
6/7/2011	K1106170-001A	62	0.46	68	69	1800	3.7	35	2.2	43	5800
6/7/2011	K1106170-002A	61	0.44	100	66	1300	7.3	30	2.2	35	7000
6/8/2011	K1106170-003A	54	0.48	63	66	1000	3	77	2	38	5800
6/8/2011	K1106170-004A	65	0.41	100	74	2100	8.7	43	1.9	37	6900
6/9/2011	K1106170-006A	46	0.4	72	59	1200	4.3	59	1.9	34	6200
6/9/2011	K1106170-007A	51	0.43	75	57	860	4,9	. 39	2.8	37	6300
6/10/2011	K1106170-008A	27	0.71	38	70	610	7.9	40	3.8	40	4000
6/10/2011	K1106170-009A	44	0.54	67	67	1300	4.2	51	2,4	44	5500
6/11/2011	K1106170-010A	34	0.59	46	67	1000	6	46	1.8	55	6200
6/11/2011	K1106170-011A	42	0.46	66	62	1100	5.1	30	1.4	37	6100
L			b								0100
Average		48.6	0.5	69.5	65.7	1227.0	5.5	45.0	2.2	40.0	5980.0
Standard Devia	ation	12.4	0.1	19.7	5.1	439.2	1.9	14.4	0.7	6.2	837.7
Coefficient of v	ariation	25.6%	19.6%	28.4%	7.8%	35.8%	34.6%	32.0%	29.6%	15.4%	14.0%
Sample Collection	Lab	As	Be	Cd	Ċr	Ръ	Hg	Ni	Se	V	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/18/2011	K1110337-001A	45	0.36	84	58	1200	5.2	44	1.8	42	8,600
10/18/2011	K1110337-002A	46	0.46	330	130	2200	6.3	39	1.8	48	6100
10/19/2011	K1110337-003A	40	0.5	59	74	1100	3	63	1.8	42	5000
10/19/2011	K1110337-004A	48	0.55	77	82	1200	5.8	50	2.7	48	6700
10/20/2011	K1110337-006A	53	0.47	120	80	1600	17	58	2.5	38	9400
10/20/2011	K1110337-007A	37	0.41	91	68	1300	14	43	2	41	6700
10/21/2011	K1110337-008A	31	0.36	69	57	990	6	32	4.5	31	7000
10/21/2011	K1110337-009A	47	0.56	120	65	2000	9.5	35	3.6	41	7800
10/26/2011	K1110337-010A	31	0.63	43	71	830	3.9	55	1.5	40	4900
10/20/2011	K1110337-011A	55	0.34	96	53	1200	4.7	35	2.3	40	6900
Average	T	43.3	0.45	108.9	73.8	1362	764	15.4			
Standard De	viation	8.4	0.45	81.4	22.0	439.5	7.54 4.6	45.4	2.5	41.1	6910
Coefficient o		19.3%	21.7%	74.8%	22.0	32.3%	4.6	10.7 23.5%	0.9	4.8	1425.5
			-1.170	14.070	20.070	JZ.J 70	00.070	23.3%	38.4%	11.8%	20.6%


Sample Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
6/12/2012	K1206354-011A	120.0	0.6	67.0	110.0	770.0	3.8	93.0	1.6	37.0	4900
6/12/2012	K1206354-012A	90.0	0.5	64.0	78.0	790.0	6.4	35.0	0.8	40.0	4400
6/13/2012	K1206354-013A	110.0	0.6	80.0	100.0	1500.0	4.6	46.0	1.2	35.0	5200
6/13/2012	K1206354-014A	76.0	0.6	57.0	84.0	530.0	3.1	53.0	1.1	36.0	4300
6/20/2012	K1206354-015A	56.0	1.4	39.0	57.0	1100.0	0.5	49.0	1.0	35.0	3700
6/14/2012	K1206354-016A	71.0	0.5	79.0	71.0	1600.0	6.3	31.0	2.1	34.0	4800
6/15/2012	K1206354-017A	56.0	0.7	32.0	94.0	2400.0	3.1	64.0	1.1	55.0	4100
6/15/2012	K1206354-018A	87.0	0.5	73.0	75.0	530.0	6.4	35.0	2.1	42.0	6200
6/19/2012	K1206354-019A	98.0	0.5	72.0	74.0	1700.0	4.2	33.0	1.8	37.0	6300
6/19/2012	K1206354-020A	87.0	0.5	57.0	230.0	1600.0	3.3	98.0	1.3	33.0	9400
P		· · ·						,			
Average		85.1	0.6	62.0	97.3	1252.0	4.2	53.7	1.4	38.4	5330.0
Standard Dev	iation	21.1	0.3	16.1	49.1	608.6	1.9	24.4	0.5	6.4	1661.4
Coefficient of	variation	24.8%	43.1%	26.0%	50.5%	48.6%	44.9%	45.4%	35.6%	16.8%	31.2%
Sample									_		
Collection	Lab	As	Be	Cd	Cr	Pb	Hg 	Ni	Se	V	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
9/25/2012	k1210235-011A	87	0.5	64	66	1300	3.2	60	0.85	37	6600
9/26/2012 9/27/2012	K1210235-012A K1210235-013A	40 48	0.48	38 42	63 57	650 590	2.5 2	49 84	3.6 0.62	33 47	3800 4200
10/2/2012	K1210235-013A	40 55	0.5	42 79	57 71	2100	 5.6	39	0.68	41	6800
10/2/2012	K1210235-015A	55	0.46	73	66	880	3.7	40	1.9	31	8600
10/3/2012	K1210235-016A	59	0.54	83	65	1600	5.9	38	1.5	36	6500
10/4/2012	K1210235-017A	60	0.63	78	91	1300	4.6	100	0.8	42	6300
10/5/2012	K1210235-018A	54	0.5	60	66	1300	1.8	120	0.75	38	21000
10/5/2012	K1210235-019A	88	0.53	84	72	1400	8.7	71	1.6	46	7100
10/6/2012	K1210235-020A	43	0.44	44	68	600	5.2	43	0.64	39	4100
Average		58.9	0.511	64.5	68.5	1172	4.32	64.4	1.294	39	7500
Standard D		16.4	0.1	17.8	8.9	490.9	2.1	28.7	0.9	5.2	4983.3
Coefficient	of variation	27.8%	10.2%	27.5%	13.0%	41.9%	49.3%	44.6%	72.0%	13.2%	66.4%

				ALL F	2013 ASH RESULTS IN			eight			
Sample											
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	V	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
6/11/2013	K1306243-011A	68.0	0.8	54.0	85.0	1300.0	3.1	52.0	1.6	38.0	4800
6/12/2013	K1306243-012A	68.0	0.7	56.0	76.0	1700.0	4.7	35.0	1.8	33.0	5200
6/12/2013	K1306243-013A	57.0	0.6	43.0	76.0	790.0	3.2	32.0	1.1	32.0	5100
6/13/2013	K1306243-014A	54.0	0.7	39.0	96.0	560.0	2.3	48.0	0.6	51.0	4100
6/13/2013	K1306243-015A	67.0	0.6	53.0	77.0	810.0	2.8	40.0	1.5	31.0	6100
6/14/2013	K1306243-016A	70.0	0.6	48.0	67.0	780.0	4.3	30.0	1.3	32.0	4100
6/18/2013	K1306243-017A	78.0	0.5	65.0	69.0	790.0	3.3	32.0	1.9	33.0	5200
6/18/2013	K1306243-018A	58.0	0.6	46.0	82.0	770.0	3.1	70.0	1.2	39.0	3800
6/19/2013	K1306243-019A	98.0	0.5	53.0	100.0	1000.0	4.3	65.0	0.8	37.0	4500
6/19/2013	K1306243-20A	87.0	0.6	68.0	160.0	1300.0	5.2	120.0	1.9	42.0	5400
0/19/2013	1(10002 10 20/1	07.0	0.0	00.0	100.0	1000.0	0.2	120.0	1.0	12.0	0100
Average		70.5	0.6	52.5	88.8	980.0	3.6	52.4	1.4	36.8	4830.0
Standard De	viation	13.8	0.1	9.1	27.2	347.2	0.9	27.6	0.4	6.2	708.8
Coefficient c		19.6%	16.2%	17.3%	30.6%	35.4%	25.7%	52.6%	32.0%	16.8%	14.7%
Cocinicient c	Variation	13.070	10.270	17.570	50.070	33.470	20.770	02.070	02.070	10.070	14.770
Sample											
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	V	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
11/4/2013	K1311221-011A	53	0.45	53	64	1700	3.9	41	1		5300
11/4/2013										45	5300
11/4/2010	K1311221-012A	55	0.54	61	66	740	4.4	37	1.2	45 47	6100
11/5/2013	K1311221-012A K1311221-013A	55 51	0.54 0.45	61 67	66 66						
				-		740	4.4	37	1.2	47	6100
11/5/2013	K1311221-013A	51	0.45	67	66	740 1100	4.4 5.1	37 41	1.2 1.7	47 31	6100 5800
11/5/2013 11/5/2013	K1311221-013A K1311221-014A	51 46	0.45 0.43	67 55	66 110	740 1100 1500	4.4 5.1 3.4	37 41 390	1.2 1.7 1.3	47 31 32	6100 5800 5000
11/5/2013 11/5/2013 11/6/2013	K1311221-013A K1311221-014A K1311221-015A	51 46 32	0.45 0.43 0.49	67 55 40	66 110 78	740 1100 1500 720	4.4 5.1 3.4 4.4	37 41 390 160	1.2 1.7 1.3 0.66	47 31 32 37	6100 5800 5000 3800
11/5/2013 11/5/2013 11/6/2013 11/6/2013	K1311221-013A K1311221-014A K1311221-015A K1311221-016A	51 46 32 53	0.45 0.43 0.49 0.48	67 55 40 64	66 110 78 94	740 1100 1500 720 720	4.4 5.1 3.4 4.4 4	37 41 390 160 100	1.2 1.7 1.3 0.66 1.4	47 31 32 37 38	6100 5800 5000 3800 6100
11/5/2013 11/5/2013 11/6/2013 11/6/2013 11/13/2013 11/13/2013 11/14/2013	K1311221-013A K1311221-014A K1311221-015A K1311221-016A K1311221-017A K1311221-018A K1311221-019A	51 46 32 53 31	0.45 0.43 0.49 0.48 0.44	67 55 40 64 39 56 38	66 110 78 94 59 63 70	740 1100 1500 720 720 1100	4.4 5.1 3.4 4.4 4 4.1 7.3 4.3	37 41 390 160 100 330	1.2 1.7 1.3 0.66 1.4 0.9	47 31 32 37 38 35	6100 5800 5000 3800 6100 4000
11/5/2013 11/5/2013 11/6/2013 11/6/2013 11/13/2013 11/13/2013	K1311221-013A K1311221-014A K1311221-015A K1311221-016A K1311221-017A K1311221-018A	51 46 32 53 31 45	0.45 0.43 0.49 0.48 0.44 0.57	67 55 40 64 39 56	66 110 78 94 59 63	740 1100 1500 720 720 1100 1100	4.4 5.1 3.4 4.4 4 4.1 7.3	37 41 390 160 100 330 51	1.2 1.7 1.3 0.66 1.4 0.9 1.7	47 31 32 37 38 35 34	6100 5800 5000 3800 6100 4000 5300
11/5/2013 11/5/2013 11/6/2013 11/6/2013 11/13/2013 11/13/2013 11/14/2013	K1311221-013A K1311221-014A K1311221-015A K1311221-016A K1311221-017A K1311221-018A K1311221-019A	51 46 32 53 31 45 38	0.45 0.43 0.49 0.48 0.44 0.57 0.6	67 55 40 64 39 56 38	66 110 78 94 59 63 70	740 1100 1500 720 720 1100 1100 600	4.4 5.1 3.4 4.4 4 4.1 7.3 4.3	37 41 390 160 100 330 51 66	1.2 1.7 1.3 0.66 1.4 0.9 1.7 0.78	47 31 32 37 38 35 34 40	6100 5800 5000 3800 6100 4000 5300 4400
11/5/2013 11/5/2013 11/6/2013 11/6/2013 11/13/2013 11/13/2013 11/14/2013 11/14/2013	K1311221-013A K1311221-014A K1311221-015A K1311221-016A K1311221-017A K1311221-018A K1311221-019A K1311221-020A	51 46 32 53 31 45 38 37	0.45 0.43 0.49 0.48 0.44 0.57 0.6 0.58	67 55 40 64 39 56 38 40	66 110 78 94 59 63 70 91	740 1100 1500 720 720 1100 1100 600 580	4.4 5.1 3.4 4.4 4 4.1 7.3 4.3 9	37 41 390 160 100 330 51 66 69	1.2 1.7 1.3 0.66 1.4 0.9 1.7 0.78 0.87	47 31 32 37 38 35 34 40 48	6100 5800 3800 6100 4000 5300 4400 4800


VII.A. Mean Values Ash Data Dry Weight

VII.B. Mean Values Ash Data Dry Weight

VII.C. Mean Values Ash Data Dry Weight

014-	As	Cd	Сг	Hg	Ni	Pb	Se	Zn
Site	Arsenic		Chromium	Mercury	Nickel	Lead	Selenium	Zinc
Hempstead	17.2	29.5	72.1	15.9	14100	1270	0.82	2440
Hempstead	17.4	29.1	43	16.9	84	1480	1.7	3020
Hempstead	15.9	31.9	48.3	16.8	49	1620		2440
Oneida Co.	13.6	16.4	132	0.13	193	369	<1.2	1350
Oneida Co.	<6.4	15.6	96.5	<0.13	159	571	<1.3	1270
Oneida Co.	7.7	17.7	111	0.22	211	1110	<1.3	1610
Westchester	12.6	31.8	49.9	1.9	54	3180	<1.2	2410
Westchester	18.4	32.3	77.7	1.7	49	2570	<1.3	2520
Westchester	13.3	29.1	56.6	2	47	2030	<1.2	2250
Dutchess Co.	15.7	42.9	42.5	13.4	55	1400	1.6	3530
Dutchess Co.	12.6	43.3	37.1	12.2	98	1280	1.4	3080
Dutchess Co.	14.3	39.6	30.2	31	84	1180	1.8	2820
Babylon	14.5	35.0	47	9.8	88	997	1.4	3360
Babylon	17.7	37.4	67.5	9.3	291	1080	1.2	3760
Babylon	14.6	31.5	66.6	9.8	117	844	1.4	3580
lslip	15.3	32.2	52	13	111	1480	<1.2	4870
Islip	20.4	39.5	62.8	21.5	338	1710	<1.2	12900
Islip	12.6	32.6	57.8	20.6	206	1670	<1.2	8690
Dutchess Co.	30.0	42.1	89.6	24.3	80	1510	<7.10	3940
Dutchess Co.	28.2	36.6	30.6	23.2	42	1370	<7.1	3530
Dutchess Co.	34.3	41.2	35.3	24	71	1820	<7.2	3810
Babylon	34.6	82.6	6530	6,5	3880	2960	<12.3	6940
Babylon	39.1	90.9	69.7	11.4	160	4680	<6.1	13800
Babylon	31.5	72.8	87.8	11.9	250	3490	<12.1	6960
Westchester	14.9	27.3	24.3	0.75	28.5	1040	<5.7	2240
Westchester	14.0	23.4	38.3	0.79	33.6	1050	<5.8	1960
Westchester	16.2	17.3	20.8	0.87	19.8	828	<5.8	1690
Hempstead	22.6	17.5	19	17.6	20.5	481	1.2	1120
Hempstead	32.6	30.7	202	17.4	166	686	<5.8	1850
Hempstead	23.5	32.7	24.9	13	28.4	898	12.3	2630
Oneida Co.	9.7	7.7	49	0.65	141	987	4.2	1450
Oneida Co.	13.0	9.1	68.2	0.62	156	2720	4.6	1510
Oneida Co.	31.6	9.5	111	0.95	314	1060	<9.9	1640
	-					1000	-0.0	1040
Average	19.1	33.6	259	10.9	658	1558	2.66	3666
Standard Deviation	8.3	18.3	1109	8.7	2463	934	3.00	2988
Coefficient. of Variation	43%	55%	428%	80%	374%	60%	113%	<u>2966</u> 81%

New York State DEC Ash Residue Characterization Project March 1992 Summary of "Combined" (Fly and Bottom) Ash Results All Results in ug/g (ppm)

Onondaga County Health Department

Division of Environmental Health 421 Montgomery Street Syracuse, New York 13202

Incinerator Monitoring Program

2013 Screening Summary for Organic Constituents

April 1, 2014

Submitted To: Cynthia B. Morrow, M.D., M.P.H. Commissioner of Health

Submitted By: Kevin L. Zimmerman Director, Division of Environmental Health

Contents:

- I. Table of Abbreviations.
- II. Executive Summary.
- III. Introduction.
- IV. PCDD/PCDF Specific Discussion.
- V. PCB Specific Discussion.
- VI. PAH Specific Discussion.
- VII. Summary and Conclusions.
- VIII. Routine Soil Sample Site Location Map.

List of Tables

Table 1:	PCDD/PCDF Results; Control and Routine Site Soils
Table 2:	PCDD/PCDF Results; WTE Facility Combined Ash
Table 3:	PCB Results; Control and Routine Site Soils
Table 4:	PCB Results; WTE Facility Combined Ash
Table 5:	PAH Results; Control and Routine Site Soils
Table 6:	PAH Results; WTE Facility Combined Ash
Attachment A:	Historical PCDD/PCDF Results

- Attachment B: Historical PCB Results
- Attachment C: PAH Background Soil Concentrations

I.

Table of AbbreviationsThe following abbreviations may be used in this report:

ATSDR PCDD/PCDF	Agency for Toxic Substances and Disease Registry.
PCDD/PCDF	Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans. Polychlorinated Biphenyls.
-	
PAH	Polycyclic Aromatic Hydrocarbons.
μg/g	micrograms per gram (also denoted as ug/g).
ng/g	nanograms per gram.
ng/kg	nanograms per kilogram (pg/g equivalent).
pg/g	picograms per gram (ng/kg equivalent).
LD	Limit of Detection.
NS	Not sampled.
ND	Not detected.
OCHD	Onondaga County Health Department.
WTE	Waste to Energy.
~	approximately.
<	Less than.
>	Greater than.

II. Executive Summary

Organic sample analyses for the year 2013 of soil and ash for the Incinerator Monitoring Program have been conducted by Axys Analytical Services LTD. Analyses for this summary include PCDD/PCDF, PCB and PAH. Ash collection was conducted by Covanta Energy personnel (formerly Odgen Martin), with random oversight by the Onondaga County Health Department's Division of Environmental Health. The collection of all ambient environmental samples was, and continues to be, the responsibility of the Division of Environmental Health. Final sample composites were prepared by Life Science Laboratories, Inc. (formerly O'Brien and Gere Environmental Laboratory).

Much of the comparative background data and information referenced in this report was obtained from NYDEC Soil Cleanup Objectives, EPA Preliminary Remediation Goals and Soil Screening Levels, along with the U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry's Toxicological Profiles.

The analyses for organics completed during this monitoring period show the parameters are within the expected range for urban and rural environments. The results are below levels associated with health risk. The 2013 sampling revealed levels typical of historical data at all sites. Given the low levels detected and the corresponding variation expected as a result of sample collection, preparation, and laboratory procedures, the levels that have been determined do not allow for comparison to establish change in the environment. In the organic monitoring conducted to date, no relationship between the operation of the incinerator and increased levels of organics has been established.

III. Introduction.

In November 1994, the Onondaga County Resource Recovery Agency, in contract with the Covanta Energy Company (formerly Ogden Martin Company), commenced operation of a municipal solid waste incinerator. This undertaking was part of a multifaceted solid waste management program to achieve a reduction of volume of landfill waste, energy withdrawal, and the removal of solids incompatible with incineration. Part of the management program for the reuse of materials and the removal of materials prior to the municipal waste stream had been started earlier.

The Onondaga County Health Department initiated a program in 1993 to include short and long term monitoring aspects to document any health implications to the public and environmental changes from the incinerator. Changes have been made to the monitoring program several times in response to new information as it became available. In 2003 the monitoring program was re-evaluated to provide a more effective and efficient program. Direct interaction was established with the Onondaga County Resource Recovery Agency (OCCRA) and the New York State Department of Environmental Conservation (DEC) in providing stack monitoring results and improved assurance on reporting of adverse events and equipment failures. This allowed for effective evaluation of short-term change in the incinerator emissions rather than the previous limited scope offsite air monitoring conducted over a nine year period. Several changes were implemented in 2009 based on the low levels of organic constituents detected in the monitoring conducted to date, and the fact that there is no evidence of a trend or levels associated with health risks. The fourteen routine soil sites (which include two control sites) continue to be sampled and analyzed twice a year for metals which are documented in a separate report. Half of the sites (7, including one control) are being tested for organics once a year. The sites will be rotated so that each is tested every other year. The program includes the flexibility to test a site two years in a row if there is an elevated level of any organic constituent. The four ash route soil sites have been eliminated from the program. These sites were located along the route that trucks take to carry ash across and out of the County. To date these sites have not shown any elevation of metals or organics and the trucks are covered at all times. Ash, directly from the incinerator continues to be analyzed for metals twice a year and organics once a year. The department continues to interact directly with OCCRA and DEC in review of stack monitoring results.

This is the fourteenth report for screening of organics, analyzed for dioxin, dibenzofurans, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, from samples of ambient soil and combined ash collected from the incinerator operation. The analysis of soil samples provides a useful and convenient mechanism for monitoring accumulative change of these organics in the environment. Surface soil samples can be utilized to monitor deposition of transient materials that can drop from atmospheric particulate materials, materials spilled in the area and materials spread on the land for agricultural purposes.

A program designed to monitor soil samples collected on a routine basis will provide an assessment of the organic material deposited in the sample area. The limitation of this matrix is that there are numerous sources and a normal action by nature is occurring on the soil at all times. The results reported should be utilized with other reports for studies in other areas. The soil sample analyses described in this report are part of an ongoing program of environmental monitoring performed by the Onondaga County Health Department as part of its overall Incinerator Monitoring Program.

This report represents data from the screening of soil and ash collected during the calendar year 2013. This is the nineteenth year of operation of the WTE facility. Three samples were collected at each soil location during each sampling event. Ash sampling is conducted by Covanta Energy personnel during their semi-annual collection. Through the sampling year 2002, it was the responsibility of the Onondaga County Health Department Environmental Toxicology Laboratory to create the soil and ash composites. Beginning with 2004, the contract laboratory, Life Science Laboratories, Inc. (formerly O'Brien and Gere Environmental Laboratories) created one composite sample for each organic analysis of soil and a two-day and three-day composite of the ash for analysis.

IV. PCDD/PCDF Specific Summary.

PCDDs are a class of chlorinated tricyclic aromatic hydrocarbons. There are 75 chlorinated dioxins, all varying in toxicity. Generally, the PCDD congeners of relative toxic concern are 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD and 1,2,3,4,6,7,8-HpCDD. PCDFs are also a class of chlorinated tricyclic aromatic hydrocarbons. There are 135 chlorinated furans, of which, approximately 10 to 12 are expected to have significant acute toxicity. The most acutely toxic isomers appear to be 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF and 2,3,4,7,8-PeCDF. Each sample was tested for seventeen different congeners of PCDD/PCDF.

Each congener of PCDD/DF has associated with it a toxic equivalency factor, TEF. This factor is an indication of the toxicity of the individual congeners with respect to 2,3,7,8 TCDD, the most toxic congener. Each sample has a calculated total toxic equivalency, TEQ, shown in Tables 1 and 2. While the toxic equivalency is the main consideration for the determination of change, individual congener concentrations have also been reviewed for significance.

Table 1 displays the results of soil analyses for dioxin and dibenzofurans at the six routine sampling sites and one control site for the spring sampling period of year 2013. In general, the set of TEQ results from these samples confirmed very well the results that were presented in the previously issued "Screening Summary for Organic Constituents" reports (Refer to Attachment A). Results from both the routine sites and the control site demonstrate no distinct pattern from background through year 2013 sampling. The TEQ's for 2013 are well below the screening level of 50 pg/g used by ATSDR and the EPA preliminary remediation goal of 1000 pg/g. The levels as reported are not of health significance and are within expected levels as stated in other documents for background levels in soil.

Table 2 displays the analyses for ash from the incinerator. The TEQ result for the ash composite for day 1 & 2 and day 3-5 are consistent with previous results. Ash is not homogenous and can contain chunks of material which may account for an occasionally inconsistent result. These results are similar to reports for ash identified by other investigators and reported in published literature. All of the ash is transported in closed vehicles and buried at a Department of Environmental Conservation permitted

landfill.

Attachment A shows the historical TEQ values for routine soil sites, control sites, and ash samples.

V. PCB Specific Summary.

Polychlorinated biphenyls, PCB's, are a class of more than 200 man-made chemical compounds. PCB's were widely used in industrial applications due to the physical characteristics of the compounds. Incineration of PCB containing products can lead to a release of PCB's into the environment. Soil sampling is a strong indicator of PCB levels in the environment because of the persistence and adhesion capabilities of the substance. PCB analysis in the past had resulted in less than detectable concentrations. Axys Analytical Services, LTD lowered the limit of detection for PCB starting in 2000 so that usable concentrations are now being presented. The ATSDR Toxicological Profile for PCB (1996) indicates that typical mean PCB concentrations in background soil are <100 μ g/kg (<100,000 pg/g). The NYSDEC has a Soil Cleanup Objective of 100,000 pg/g for PCB's and the EPA has a soil screening level of 240,000 pg/g for residential soil.

PCB results are presented in Tables 3 and 4. Table 3 displays results for the six routine sites within the impact area of the WTE Facility along with a control site. The mean PCB concentration for routine sites was 7,838 pg/g, with a maximum concentration of 38,400 pg/g at the DOT@Jaquith site. In general, PCB results in this study are well below the ATSDR typical background soil level of 100,000 pg/g. Soil is not homogenous and can contain materials that can account for an occasional inconsistent result. Attachment B shows historical levels of PCB's at routine soil sites along with control sites.

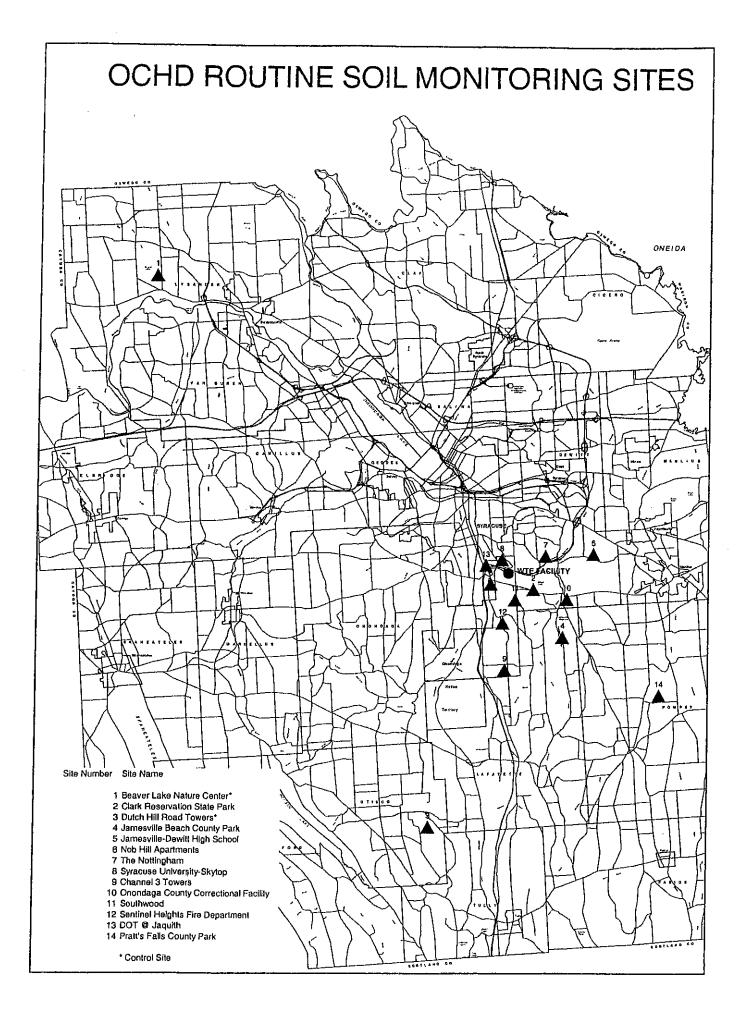
Table 4 displays the results of PCB analyses of ash as collected from the WTE Facility. At 16,200 and 10,100 pg/g, the PCB levels for the year 2013 sampling are lower than the previously stated ATSDR typical background soil level.

VI. PAH Specific Summary.

Polycyclic aromatic hydrocarbons, PAH's, are primarily formed as the result of incomplete combustion of organic matter. PAH's, like PCB's, have a strong persistence and affinity to particulate matter. For this reason, soil and ash sampling are quality measures of the levels attributable to incineration. As with the PCB analyses, Axys Analytical Services, LTD has lowered the limit of detection for PAH congeners for this report so that additional usable concentrations are now being presented.

PAH results for soil are presented in Table 5. Attachment C presents NYSDEC Soil Cleanup Objectives, EPA screening levels, NYS Rural soil survey results, and Toxicological Profile levels for PAH's for rural, agricultural and urban soils. These levels can vary widely for the individual PAH's. The levels reported in the 2013 study are generally within these expected ambient levels.

PAH results for the WTE ash composites are presented in Table 6. Comparison


of the 2013 composite ash results to the averages for years 1999 through 2012 individual results exhibits little variation in PAH congener specific concentrations.

VII. Summary and Conclusions

This screening represents the organic analysis data for calendar year 2013 environmental soil and ash samples. PCDD, PCDF, PCB and PAH levels are all quality indicators of ambient conditions in the environment. By following the concentrations and trends of these compounds, two objectives are accomplished. First, ambient conditions are monitored for changes due to point sources. Second, health risks can be established for the effect of the soil concentrations.

The reported concentrations of all organic compounds in this screening are within expected levels and are below significant health risk levels. In general, little change in levels of these compounds have been observed from background through the present organic screening period.

The Onondaga County Health Department will continue to monitor soil and ash for organic compounds.

								Tabl
		Control Site			Rout	tine Sites		
		BeaverLake	Pratts Falls	The Nottingham	DOT @ Jaquith	Channel 3 Tower	Southwood	OCCF
		May 15 2013	May 15 2013	May 15 2013	May 15 2013	May 15 2013	May 15 2013	May 15 2013
accession Number:		L19931-3	L19931-6	L10031-1	L19931-2	L19931-5	L19931-4	L19931-7
CDD / PCDF	TEF							
,3,7,8-TCDD	1	0.118	0.137	0.118	3.91	0.232	0.181	0.249
,2,3,7,8-PeCDD	0.5	0.221	0.206	0.221	4.33	0.248	0.282	1.32
,2,3,4,7,8-HxCDD	0.1	0.264	0.247	0.264	8.91	0.378	0.297	3.27
,2,3,6,7,8-HxCDD	0.1	0.736	0.504	0.736	18.6	0.714	0.593	7.57
,2,3,7,8,9-HxCDD	0.1	0.725	0.887	0.725	24.2	1.03	0.78	8.11
,2,3,4,6,7,8-HpCDD	0.01	9.84	10.1	9.84	464	11	11.8	228
DCDD	0.001	55	52.6	55	3030	63.3	72.7	1400
,3,7,8-TCDF	0.1	0.603	0.463	0.603	3.73	0.934	0.652	1.28
,2,3,7,8-PeCDF	0.05	0.275	0.244	0.275	1.53	0.377	0.284	0.477
3,4,7,8-PeCDF	0.5	0.349	0.324	0.349	2.67	0.474	0.361	0.603
,2,3,4,7,8-HxCDF	0.1	0.507	0.506	0.507	6.36	0.816	0.557	1.49
,2,3,6,7,8-HxCDF	0.1	0.359	0.341	0.359	8.78	0.48	0.401	1.04
,2,3,7,8,9-HxCDF	0.1	< 0.0481	0.069	< 0.0481	0.134	< 0.0468	< 0.0485	0.068
,3,4,6,7,8-HxCDF	0.1	0.302	0.376	0.302	7.79	0.358	0.357	0.957
,2,3,4,6,7,8-HpCDF	0.01	3.8	2.91	3.8	128	3.67	3.15	34.2
,2,3,4,7,8,9-HpCDF	0.01	0.261	0.254	0.261	7.02	0.352	0.284	1.54
CDF	0.001	8.08	5.67	8.08	186	6.68	5.26	96.1
Total TEQ		0.791	0.91	0.791	24.3	1.02	0.807	7.67
otal Tetra-Dioxins		1.66	0.898	9.87	9.87	0.801	0.723	2.83
otal Penta-Dioxins		2.41	1.47	28.8	28.8	2.02	2.48	9.13
otal Hexa-Dioxins		6.49	7.01	175	175	7.34	7.43	57.7
otal Hepta-Dioxins		19.2	19.9	862	862	19.9	23.1	382
otal Tetra-Furans		4.66	3.24	35.6	35.6	3.45	4.82	9.68
otal Penta-Furans		4.26	3.56	106	106	2.73	4.11	10.4
otal Hexa-Furans		4.74	4.11	202	202	6.18	3.68	29.3
otal Hepta-Furans		8.46	5.6	267	267	7.67	6.42	86.9
						Results reported in p	og/g (ng/kg equivalent) dry	weight.
						Comparison Values		
						EPA Action Level	1,000 ng/kg (Total TEQ)	
						ATSDR EMEG Value	50 ng/kg (Total TEQ.)	
						, TODICEMEO Value		

			Table 2
		Comb	ined Ash
			2010
		Day 1 & 2	ng 2013 Day 3 - 5
		Day Ta Z	Day 5 5
Accession Number:		L19931-8	L19931-9
	I		
PCDD / PCDF	TEF		
2,3,7,8-TCDD	1	17.2	18.7
1,2,3,7,8-PeCDD	0.5	43.6	41.5
1,2,3,4,7,8-HxCDD	0.1	29.8	30.2
1,2,3,6,7,8-HxCDD	0.1	48.7	49.4
1,2,3,7,8,9-HxCDD	0.1	72.8	74.5
1,2,3,4,6,7,8-HpCDD	0.01	410	410
OCDD	0.001	1050	961
2,3,7,8-TCDF	0.1	363	302
1,2,3,7,8-PeCDF	0.05	124	102
2,3,4,7,8-PeCDF	0.5	124	102
1,2,3,4,7,8-HxCDF	0.1	125	107
1,2,3,6,7,8-HxCDF	0.1	132	113
1,2,3,7,8,9-HxCDF	0.1	9.92	9.2
2,3,4,6,7,8-HxCDF	0.1	95.8	84.8
1,2,3,4,6,7,8-HpCDF	0.01	326	323
1,2,3,4,7,8,9-HpCDF	0.01	39.7	48
OCDF	0.001	119	183
Total TEQ		176	161
		050	044
Total Tetra-Dioxins		353	311
Total Penta-Dioxins		451	414
Total Hexa-Dioxins		622	646
Total Hepta-Dioxins		861	875
Total Tetra-Furans		2700	2490
Total Penta-Furans Total Hexa-Furans		1960	1660
		1230	1050
Total Hepta-Furans		513	519
	Re	esults reported in	pg/g dry weight.

							Table
	Control Site			Rout	ine Sites		
	Designal also	Dartha Falla	The Nettingtheory		Observation Territor	Courthurson d	0005
	Beaver Lake	Pratts Falls	The Nottingham	DOT @ Jaquith	Channel 3 Tower	Southwood	OCCF
	May 15 2013	May 15 2013	May 15 2013	May 15 2013	May 15 2013	May 15 2013	May 15 2013
accession Number:	L1991-3	L1991-6	L1991-1	L16543	L1654-7	L1654-5	L1654-6(A)
PCB							
Total Monochloro Biphenlys	0.643	0.81	1.28	34.6	2.15	1.75	2.35
otal Dichloro Biphenyls	2.89	4.05	16.3	180	2.8	8.28	15.7
Total Trichloro Biphenyls	7.91	10.8	20	759	9.37	26.2	52.5
otal Tetrachloro Biphenyls	32.4	37	71	2090	38.2	68.2	144
Total Pentachloro Biphenyls	170	158	252	7300	174	206	541
Total Hexachloro Biphenyls	536	346	409	13900	333	366	1430
otal Heptachloro Biphenyls	387	276	304	8940	258	301	1220
Total Octachloro Biphenyls	165	170	149	3470	143	180	449
otal Nonachloro Biphenyls	46.3	66.1	48.8	1120	46.5	62.1	86.7
Decachloro Biphenyl	34.4	32.9	17.1	628	22.3	24.1	26.3
otal PCB'S	1380	1100	1290	38400	1030	1240	3970
					Results reported in p	g/g dry weight.	
					Comparison Value		
					ATSDR Typical Mean Ba	ckground Value	< 100,000 pg/g

		Table 4
	Combin	ned Ash
		2013
	Day 1 & 2	Day 3 - 5
Accession Number:	L19931-8W	L19931-9W
РСВ		
Total Monochloro Biphenlys	287	347
Total Dichloro Biphenyls	1970	1910
Total Trichloro Biphenyls	6710	3400
Total Tetrachloro Biphenyls	5320	2770
Total Pentachloro Biphenyls	1180	902
Total Hexachloro Biphenyls	393	380
Total Heptachloro Biphenyls	178	192
Total Octachloro Biphenyls	68.6	92.2
Total Nonachloro Biphenyls	28	55.6
Decachloro Biphenyl	20.7	29.4
Total PCB'S	16200	10100
	Results reported in p	og/g dry weight.

							Table
	Control Site			Boutin	e Sites		
	control site			Routin	e Siles		
	Beaver Lake	Pratts Falls	The Nottingham	DOT @ Jaquith	Channel 3 Towers	Southwood	OCCF
	May 15 2013	May 15 2013	May 15 2013	May 15 2013	May 15 2013	May 15 2013	May 15 2013
Accession Number:	L19931-3	L19931-6	L10031-1	L19931-2	L19931-5	L19931-4	L19931-7
РАН							
Naphthalene	1.99	2.74	4.22	204	7.2	3.76	7.96
Acenaphthylene	1.42	3.26	6.11	1180	34	5.3	8.98
Acenapthene	0.503	0.649	1.02	131	10.7	1.78	1.9
Fluorene	0.412	0.643	0.798	216	19.5	2.55	2.15
Phenanthrene	7.82	14	24.9	3240	228	26.7	40.3
Anthracene	1.49	2.68	4.38	1310	59.8	6.01	8.72
Iuoranthene	19.2	28.2	63.9	8600	328	57.8	75.4
Pyrene	17.2	25.8	53.2	7210	278	48.7	69.2
Benzo(A)Anthracene	8.47	12.6	21.7	3970	117	22.4	29
Chrysene	12.2	22.2	35.1	4450	148	30.4	45.9
Benzo(B)Flouranthene	11.3	15.9	30.1	3780	85.4	25.5	36.1
Benzo(J,K)Fluoranthene	10.9	14.9	30.8	4210	105	26.9	38.4
Benzo(E)Pyrene	8.83	15	23.4	3420	73.3	20.8	30.5
Benzo(A)Pyrene	12.8	17.9	31.8	4770	120	32.1	41.6
Perylene	2.51	3.52	6.19	1070	23.1	5.86	8.21
Dibenzo(A,H)Anthracene	1.85	3.38	5.26	664	18.9	4.9	6.86
ndeno(1,2,3-CD)Pyrene	8.9	12.2	23	3000	65.4	20.7	28.6
Benzo(G,H,I)Perylene	7.89	12.6	21.9	2760	59.6	20.3	29.1
2-Methylnaphthalene	1.33	2.52	5.17	157	6.12	3.79	9.2
2,6-DimethyInaphthalene	0.719	1.34	2.38	85.3	5.37	1.91	4.6
2,3,5-TrimethyInaphthalene	0.596	1.19	2.9	124	7.41	1.92	4.92
I-Methylphenanthrene	1.42	2.78	5.62	494	35	4.67	9.02
Dibenzothiophene	0.87	2.12	1.97	155	14.7	2.05	3.19
2-Chloronaphthalene	0.0451	0.02	0.0464	0.02	0.03	0.02	0.02
					Results reported in	na/a dry weiaht.	

		Table 6
	Comb	ined Ash
	-	ng 2013
	Day 1 & 2	Day 3 - 5
Accession Number:	L19931-8	L19931-9
РАН		
Naphthalene	70.4	62.4
Acenaphthylene	21.7	17.3
Acenapthene	19	19.9
Fluorene	32.2	30.5
Phenanthrene	169	162
Anthracene	40.3	28.4
Fluoranthene	148	129
Pyrene	116	103
Benzo(A)Anthracene	51.9	48.9
Chrysene	62.2	56.9
Benzo(B)Fluoranthene	43.1	39.1
Benzo(J,K)Fluoranthene	42.1	42.8
Benzo(E)Pyrene	35.7	53
Benzo(A)Pyrene	50.3	49.4
Perylene	13.5	12.7
Dibenzo(A,H)Anthracene	8.66	8.23
Indeno(1,2,3-CD)Pyrene	31.5	31.8
Benzo(G,H,I)Perylene	31.9	31.8
2-Methylnaphthalene	23.7	20.8
2,6-DimethyInaphthalene	6.02	6.14
2,3,5-TrimethyInaphthalene	3.56	3.59
1-methylphenanthrene	10.5	11.1
Dibenzothiophene	10.1	9.92
2-Chloronaphthalene	0.226	0.227
	Results reported in	ng/g dp/ weight

Attachment A															
				Dioxin/Furan TE	Q Soil Resuts Th	rough Year 2013	(pa/a dry weight)								
				<u>Kc</u>	utine Soil Sites										
Site						Year									
	1994	1999	2000	2001	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	1994	1999	2000	2001	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Clark Reservation	1.8	1.2	2.27	1.42	1.23	2.03	1.90	1.76	1.73	1.26	***	1.64	***	1.75	***
lamesville Beach	0.6	0.5	1.09	0.82	0.70	0.71	0.97	0.86	0.93	0.77	***	0.52	***	0.488	***
DCCF	0.79	2.2	1.68	1.47	1.26	1.38	5.54	1.52	1.94	1331.72@	1.72	***	2.13	***	7.67
OOT @ Jaquith	2		1.5	1.64	3.41	2.41	3.78	3.38	1.73	39.90@	2.62	***	3.95	***	2.43
Dutch Hill *	0.77		1.41	1.16	1.40	1.03	1.26	1.02	1.02	0.64	***	0.73	***	2.44	***
Erie - Poolsbrook *	1.39		1.5	1.14	1.86	**	**	**	**	**	**	**	**	**	**
Nottingham	0.51		0.78	0.79	0.80	0.70	0.94	0.85	0.84	0.74	0.76	***	0.43	***	0.791
SHFD	12		8.02	9.89	9.72	7.02	8.09	6.27	7.20	10.74	***	7.12	***	16	***
Sevier Rd	1.8		2.07	2.58	2.56	**	**	**	**	**	**	**	**	**	**
Beaver Lake *			0.51	0.53	0.85	0.70	0.72	0.64	0.69	0.65	0.38	***	0.5	***	0.751
Ch. 3 Towers			3.36	3.88	3.35	9.66	7.79	7.69	5.39	2.44	3.72	***	0.45	***	1.02
Gen.Crushed Stone			2.77	1.98	2.13	**	**	**	**	**	**	**	**	**	**
lighland Forest			1.18	1.24	0.96	**	**	**	**	**	**	**	**	**	**
D High School			1.32	1.29	1.12	1.10	1.48	1.16	1.06	1.28	***	1.13	***	0.951	***
Nob Hill			0.93	0.91	0.90	6.83	1.01	1.00	1.07	1.05	***	0.78	***	0.488	***
Pratts Falls			0.91	0.98	0.77	0.87	0.98	0.83	0.94	1.17	0.82	***	0.94	***	0.91
Southwood			0.6	1.14	1.01	1.08	1.05	0.97	1.09	1.01	0.80	***	0.93	***	0.807
Syracuse University			3.11	6.97	9.47	13.89	3.14	3.66	12.96	0.67	***	2.45	***	1.63	***
Denotes Control Sit	es														
** Site no longer sam		am re-evaluation													
*** Site not sampled t					1 1										
@ A single elevated	value will not be a	assumed to be in	dicative of a char	nge at a specific :	site, rather a patt	ern of values mus	t demonstrate a s	tatistically signifi	cant difference.						
				<u>C</u>	ombined Ash										
Site					V	ear									
Sile					Ŷ										
	1999-Spring	1999-Fall	2000-Fall	2001-Fall	2002-Fall	2004-Spring	2005-Spring	2006-Spring	2007-Spring	2008-Spring	2009-Spring	2010-Spring	2011-Spring	2012-Spring	2013-Spring
Day 1 and 2	256	153	109	123	177	72	191	246	250	243	168	200	197	116	176
Day 3, 4, and 5	242	205	154	137	220	445	142	148	276	240	126	172	129	127	161
Note: For reference	ournooco the AT		n Invelfor Dictin		ng/g and the CD		1 000 pa/a								
NOTE: LOI LEIELEUCE	purposes, the AT	אטכ investigatio	I LEVELIOF DIOXIN/	rulali i EQ is 50	pg/g and the EP	A clean up level is	s i,uuu µg/g.								

<u>Attachment B</u>													
			PCB Results thr	ough Year 2013	(pa/a drv weiah	t)							
				Routine	Soil Sites								
Site													
	2000	2001	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Clark Reservation	6010	2360	3150	2780	3610	2770	4110	2640	***	2960	***	2980	***
Jamesville Beach	1260	644	683	703	1110	781	1220	1610	***	589	***	707	***
OCCF	3080	5230	2000	2310	6940	3120	6320	2190	2810	***	2650	***	3970
DOT @ Jaquith	16100	15400	45100	9220	67100	49100	18000	14200	34700	***	31800	***	38400
Dutch Hill *	2210	1170	1400	1200	1380	1140	1450	1340	***	1060	***	2350	***
Erie - Poolsbrook *	2620	1400	2020	**	**	**	**	**	**	**	**	**	**
Nottingham	2140	2280	3610	1640	7380	2850	3050	2110	4200	***	2020	***	1290
SHFD	3080	2970	1760	1900	2730	1610	2510	1730	***	2240	***	1260	***
Sevier Rd	1870	1600	2250	**	**	**	**	**	**	**	**	**	**
Beaver Lake *	1970	1210	5250	2650	1420	1360	1360	1370	2450	***	1110	***	1380
Ch. 3 Towers	3360	2310	2490	1620	1830	1730	2220	1400	1510	***	723	***	1030
General Crushed Stone	9430	3160	5450	**	**	**	**	**	**	**	**	**	**
Highland Forest	2120	1210	1270	**	**	**	**	**	**	**	**	**	**
JD High School	3580	1780	1732	1810	2640	1780	1720	2720	***	1750	***	1450	***
Nob Hill	3500	2480	2500	3440	2810	2970	2830	2950	***	2510	***	1820	***
Pratts Falls	1890	1840	1440	1620	1650	1220	1450	2050	1230	***	1910	***	1100
Southwood	2240	2160	1150	1480	1470	1470	2750	1640	1640	***	1120	***	1240
Syracuse University	10700	114000	11000	9510	6940	11400	10900	1170	***	78600	***	17400	***
* Denotes Control Sites													
** Site no longer sampled d	ue to program re-e	evaluation											
*** Site not sampled this year	ar. Sites are samp	led every other	/ear.	O a mah i	a a d A a b								
				IdmoJ	ned Ash								
Site													
	0000 T "	000 <i>/</i> = "	0000 T "	0004.0	0005.0		0007.0.1			0040.0			0040 C -
	2000-Fall	2001-Fall	2002-Fall	2004-Spring	2005-Spring	2006-Spring	2007-Spring	2008-Spring	2009-Spring	2010-Spring	2011-Spring	2012-Spring	2013-Sprin
Day 1 and 2	79000	22000	13600	7850	2470	5770	3080	23000	3100	5930	1260	1800	16200
Day 3, 4, and 5	4700	7020	6580	38000	33000	57000	3060	5550	51900	8840	6060	20500	10100
DCP require prior to 2000		n dotoction !!-	nito Starting !:	2000									
PCB results prior to 2000 detection limits were lowe			-										
Note: For reference purpos in background soil are less			cal mean PCB c	oncentrations									

РАН	NYSDEC	NYSDEC	EPA	NYS	Tox. ⁵ Profile	Tox. ⁶ Profile	Tox. ⁷ Profile
	SCO ¹ unrestricted	SCO ² restricted	screening level ³	Rural soil survey ⁴	Rural soil background	Agr. Soil background	Urban soil background
Napthalene	12,000	100,000	3,900	17-24	NA	NA	NA
Acenaphthylene	100,000	100,000	3,400,000	110- 500	NA	5	NA
Acenapthene	20,000	100,000	NA	150	1.7	6	NA
Fluorene	30,000	100,000	2,300,000	580	NA	9.7	NA
Phenanthrene	100,000	100,000	NA	8,500	30	48-140	NA
Anthracene	100,000	100,000	17,000,000	620	NA	11-13	NA
Fluoranthene	100,000	100,000	2,300,000	7,400	0.3-40	120-210	200- 166,000
Pyrene	100,000	100,00	1,700,000	8,700	1-19.7	99-150	145- 147,000
Benzo(A)Anthracene	1,000	1,000	150	2,900	5-20	56-110	169- 59,000
Chrysene	1,000	1,000	15,000	1,300	38.3	78-120	251-640
Benzo(B,K)Fluoranthene	1,000	1,000	150-1500	1,500- 3,300	10-110	58-250	15,000- 62,000
Benzo(E)Pyrene	NA	NA	NA	NA	NA	53-130	60-14,000
Benzo(A)Pyrene	1,000	1,000	15	2,400	2-1,300	4.6-900	165-220
Perylene	NA	NA	NA	8,700	NA	NA	NA
Dibenzo(A,H)Anthracene	330	330	15	NA	NA	NA	NA
Indeno(1,2,3-CD)Pyrene	500	500	150	660	10-15	63-100	8,000- 61,000
Benzo(G,H,I)Perylene	100,000	100,000	NA	630	10-70	66	900- 47,000
2-Methylnaphthalene	NA	NA	310,000	NA	NA	NA	NA
2-Chloronaphthalene	NA	NA	NA	NA	NA	NA	NA

Sources:

1,2. New York State Department of Environmental Soil Cleanup Objectives, 9/06. Unrestricted use accounts for the use of the land for raising livestock.

3. USEPA residential soil screening levels (SSL's), September, 2008/

4. NYS Rural Soil Survey, NYSDEC, 2005.

5,6,7. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profiles, 1995/